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We examine the problem of finding edge-disjoint paths between pairs of vertices 
placed on inner as well as outer faces of a finite grid graph. For each path a global 
routing, which fixes the topology of the path relative to the nontrivial faces, is part 
of the input. We give necessary and sufftcient conditions for the solvability of the 
problem and provide an algorithm to find a solution with running time quadratic 
in the size of the problem. 'c' 1992 Academic Press. Inc. 

I. INTR~DUCTI~N 

The planar rectangular grid consists of vertices {(x, y); x, y E H} and 
edges {((x, y), (x’, y’)); Ix - x’l + ly - y’l = 1 }. A routing region R is a 
finite subgraph of the planar rectangular grid. 

In the sequel R always denotes a routing region. We call a bounded face 
F of R trivial if it has exactly four vertices on its boundary and nontrivial 
otherwise. We use M to denote the nontrivial bounded faces and R to 
denote M together with the unbounded face. Let B be the set of vertices of 
R with degree at most three. Note that a vertex u E B lies on the boundary 
of a face FE% 

A local routing is a path in the routing region R connecting two vertices 
of B. The endpoints of the path are called its terminals. Two local routings 
p and q are elementarily equivalent if there are paths pl, pz, q2, p, such 
that p=pIpzp3, q=p,q2p3, and such that p2qF1 (q;’ is the reverse of 
path q2) is a boundary cycle of a trivial face. Two elementarily equivalent 
paths are hence the same except that they take two different routes around 
a single trivial face. Two local routings p and q are equivalent if there is a 
sequence pO, . . . . pk, ka 0, of paths such that p =pO, q =pk, and pi and 
P r+l are elementarily equivalent for 0 <i< k. Note that if p and q are 
equivalent then p and q have the same terminals. 

We use [p] to denote the equivalence class of local routing p, i.e., to 
denote the homotopy class of path p. A global routing or net is an equiva- 
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lence class [p]; the terminals of the path p are also called the terminals of 
the net. We are now ready to state the local routing problem (LPR). 

Input. A routing region R and a multi-set JV of nets. 

Output. A local routing lr(N) for each net NE JV such that 

(1) lr(N)EN for all NEJlr 

(2) lr(N,) and lr(N,) are edge-disjoint for N,, N,EJV, N, #N, 

or an indication that there is no such set of local routings. 

Figure 1 gives an example. We assume that each net NE JV is given by 
one of its representatives. We use r to denote the number of vertices of R 
and m to denote the total length of the representatives and call n = r + m 
the size of the problem. A local routing problem is called soluable, if an 
appropriate set of local routings exists, and is called unsolvable otherwise. 
In this paper we will prove the following theorem. 

FIG. 1. A local routing problem and its solution. The global routings are shown as curves 
for added clarity. 
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FIG. 2. The multiple-source dual D(R) of the routing region of Fig. 1. A cut of 
capacity 8 is shown wiggled. 

THEOREM 1. Let P = (R, Ju-) be an even bounded LRP of size n. 

(a) P is solvable if and only if the free capacity of every cut is 
nonnegative. 

(b) In time O(r’+m) = O(n2) one can decide whether P is solvable 
and also construct a solution if it is. 

It remains to define the terms “even LRP,” “cut,” “free capacity of a cut,” 
and “bounded.” The multiple-source dual D(R) of routing region R is 
defined as follows (cf. Fig. 2). For every edge e of R there is a dual edge 
d(e) with its endpoints lying in those faces of R which are separated by e. 
The endpoints of dual edges which lie in faces outside A are identified, the 
endpoints in faces in R are kept distinct and are called sources of the dual 
graph. A cut of R is a simple path in the dual graph connecting two 
sources. Thed capacity cap(C) of a cut C is its length (= number of edges 
of R intersected by the cut) (cf. Fig. 2). A cut can be viewed as a polygonal 
line s 1, . . . . sk, where each si is a straightline segment and si and si+ i have 
different directions (one horizontal, one vertical). A cut is a l-bend cut if 
k<2 and a O-bend cut if k=l. 

Let C be a cut and let p be a path. Then cross(p, C) is the number of 
edges e of p with d(e) in C, i.e., the number of times p goes across C. For 
a global routing gr we define 

cross(gr, C) = min { cross(p, C); p E gr }. 

The density dens(C) of cut C is defined by 

dens(C) = 1 cross(N, C) 
NE.+’ 
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and the free capacity fcap(C) is given by 

fcap( C) = cap(C) - dens(C). 

A cut C is saturated if fcap(C) = 0 and oversaturated if fcap(C) < 0. 
An LRP is even if fcap(C) is even for every cut C and it is l-even if 

fcap(C) is even for every l-bend cut C. 
For a vertex VE V, deg(u) denotes the degree of u in the graph R and 

ter(v) denotes the number of nets having u as an endpoint. An LRP is 
bounded, if deg(u) + ter(v) Q 4 for all vertices u. 

At this point all terms are defined and we can now put our work into 
perspective. We view the routing problem as the problem of finding edge- 
disjoint paths in a grid graph. This is usually called routing in knock-knee 
mode, since two solution paths may both bend in the same vertex. The 
mode where this is excluded is called Manhattan mode. Previous work on 
routing problems in knock-knee mode can be found in Preparata and 
Lipski [PL], Frank [F], Mehlhorn and Preparata [MP], Nishizeki, Saito 
and Suzuki [NSS], Kaufmann and Mehlhorn [KM], Becker and 
Mehlhorn [BM], Kramer and van Leeuwen [KvL], and Brady and 
Brown [BB]. The problems considered in the first five papers are special 
cases of the LRP considered here. They solve the routing problem for 
channels [PL], switchboxes [F, MP], convex generalized switchboxes 
[NSS], and generalized switchboxes [MK], respectively. In a generalized 
switchbox problem we have M = @, in a convex generalized switchbox 
problem we have in addition that every two boundary vertices are connected 
by a path with at most one bend, and in a switchbox problem R is a rectangle. 
The time bounds obtained in these papers are much better than the bound 
in the present paper, e.g., O(n(log n)‘) for the generalized switchbox 
problem. The paper by Becker and Mehlhorn is incomparable with the 
present paper; it is more restrictive in some ways, since all vertices in B 
have to lie on the boundary of the unbounded face, and it is more general 
in other ways, since the routing region R may be an arbitrary even (= all 
nodes not on the boundary of the unbounded face have even degree) 
planar graph, nets are simply pairs of points in B, and no homotopies are 
required in the input. Kramer and van Leeuwen prove that the global routing 
problem is NP-complete, i.e., if we drop the condition that lr(N) E N for 
NE JV (in other words, a net is just a pair of vertices in B), then the 
problem becomes NP-complete. Finally, Brady and Brown treat the 
problem of layer assignment and show that any layout in knock-knee mode 
can be wired using four conducting layers. For channels three layers suffice 
WI. 

The present paper also has sources in graph theory, most notably the 
paper by Okamura and Seymour [OS]. They showed that the cut condi- 
tion, i.e., fcap(X) >, 0 for all cuts X, is necessary and sufficient for the 
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solvability of even multi-commodity flow problems in planar graphs 
provided that all terminals lie on the same face. We drop this restriction 
and thus generalize their result; however, our solution only works for grid 
graphs. The generalization to general planer graphs remains a major 
challenge. A partial result was recently obtained by van Hoesel and 
Schrijver [HS]; they treat the case [MI = 1. An implementations of the 
Okamura and Seymour result can be found in Matsumoto, Nishizeki, and 
Saito [MNS] and in Becker and Mehlhorn. 

We also want to mention the papers by Cole and Siegel [CS] and 
Leiserson and Maley [LM]. They prove the same result as we do but for 
river routing instead of routing in knock-knee mode, i.e., they require that 
solution paths are uertex-disjoint. Of course, nets cannot cross in their case. 

Automatic VLSI design systems, e.g., CALCOS (Lauther [L]) and PI 
(Rivest [R]) for integrated circuits divide the routing problem into several 
stages: 

(1) Determine a global routing for every net. 

(2) Cut the routing region into regions of simple shape, e.g., 
channels. 

(3) Determine for every net the exact positions where it crosses 
channel boundaries. 

(4) Route each channel. 

In some systems, e.g., CALCOS, stages (3) and (4) are combined into a 
single stage. Channels are routed one by one and the routings in the first 
i channels fix the positions of the nets which leave these channels. In all 
stages heuristic algorithms are usually used. The result of Kramer and 
van Leeuwen states that the general routing problem is NP-complete; our 
theorem states that the combination of stages (2) to (4) can be solved in 
polynomial time, at least for two-terminal nets and in knock-knee mode. 

This paper is organized as follows. In Section II we give the algorithm 
which is then proved correct in Section III. Section IV, describes an 
implementation and its analysis. Section V is a short conclusion; it lists 
some open problems and recent extensions of the present work. 

We close this section with a remark about notation. A path p is a 
sequence e 1 e2 “.ek of edges where ei=(ui, u~+~) for 1 di<k. We call v1 
the start vertex of p, uk+ 1 the end vertex of p and u, and uk+ 1 its terminals; 
i.e., we view a path as being oriented from u, to uk + , . The reverse path 
P -l=ek...e2e1 is then oriented from v~+~ to v,. A net N=[pJ is an 
equivalence class of paths and therefore also oriented. The start vertex of 
N is the start vertex of p. The reverse net N-’ is the equivalence class 
[p-‘1. Of course, a routing problem changes only in an inessential way, if 
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the orientation of some nets is changed. We will tacitly use this fact in the 
following sections. 

II. THE ALGORITHM 

In this section we describe an algorithm for solving local routing 
problems. Let P, = (V,, E,, MO) be an even local routing problem which 
satisfies the cut condition, i.e., fcap( C) E 2 . N, for every cut C. Here 2 . N, 
denotes the set of even nonnegative integers. Our algorithm constructs a 
solution for P, iteratively by transforming P, into simpler and simpler 
routing problems. We will maintain the invariant that the current routing 
problem P = (V, E, .A’“) is good with respect to P,. 

DEFINITION 1. A routing problem P = ( V, E, ,/u) is good with respect to 
PO= (V,, Eo,4 if 

(a) P is a routing problem with VG V, and EZ E,,. 

(b) fcap( Y)E~ . N, for all l-bend cuts Y; i.e., the cut condition for 
l-bend cuts is satisfied and the problem is l-even. 

(c) P is bounded. 

(d) If P is solvable then P, is solvable. 

Remark. For the problems P constructed by our algorithm the connec- 
tion between a solution of P and a solution of P, is very simple. For every 
net NE N0 there will be a set M(N) c JV of nets of the current problem P 
and a set E(N) E EO - E of edges such that local routings for the nets in 
N(N) together with the edges in E(N) form a local routing for N. In other 
words, the set E(N) of edges has already been reserved for the net N and 
the fragments M(N) of net N still have to be routed. When P is trivial, i.e., 
.N = fzr, then a solution for P, was found. 

We will mostly use the phrase P is good instead of P is good with respect 
to the basic problem P,. 

DEFINITION 2. An LRP P is reduced if ter(v) < deg(u) for all u E V, and 
there is no cut with capacity one. 

In each iteration of the algorithm (cf. Program 1) the routing problem is 
simplified in two phases (Procedures Simplify1 and Simplify2). Procedure 
Simplify1 eliminates all cuts with capacity one and all vertices v with 
deg(u) = ter(r) and turns the routing problem into a reduced routing 
problem. Procedure Simplify2 works on reduced routing problems and 
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either discards some edges in the left upper corner of the routing region (if 
there is no saturated cut through the left upper corner) or it chooses a par- 
ticular net to be routed through the left upper corner. In the second case 
a vertex u with deg(u) = ter(v) is created and hence Simplify1 applies in the 
next iteration. Thus if Simplify2 of one iteration does not remove an edge 
then Simplify1 of the next iteration will remove a vertex of the routing 
region and hence O(n) iterations suffice to find a solution. 

PROGRAM 1. (* P, = ( I$,, E,, -6) is an even local routing problem 
satisfying the cut condition *). 

P=(V,E,Jv)+-P, 
while E # 0 
do(* P is good *) 

Simplify 1; 
(* P is good and reduced * ) 
Simplify2; 
(* P is good *) 

od 

LEMMA 1. Let P be a 1-euen local routing problem. Then deg(u) = ter(u) 
mod 2 for all u. In particular, if P is bounded then deg(u) = 3 implies 
ter(v) = 1 and if P is reduced deg(u) = 2 implies ter(u) = 0. Also there are no 
vertices of degree one. 

Proof: Let u be any vertex. If deg(u) = 4 then u 4 B and hence ter(v) = 0 
and the claim is true. So let us assume that u E B. Then u lies on the bound- 
ary of c nontrivial faces, 16 c < 3. Thus there are c disjoint cuts X,, . . . . X, 
which separate u from the remainder of the graph. Note that deg(u) = 
cap(X,)+ ... + cap(X,). Also ter(u) = (dens(X,) + . . . + dens(X,)) mod 2, 
since exactly the paths having u as a terminal cross X an odd number of 
times. Thus deg(u) - ter(u) = (fcap(X,) + . . . + fcap(X,)) mod 2. It remains 
to be shown that fcap(X,) = 0 mod 2 for all i, 1~ i < c. If c > 2 or deg(u) < 2 
then the cuts X, are l-bend cuts and hence we have fcap(Xi) = 0 mod 2 for 
all i since P is l-even. If c = 1 and deg(u) = 3 then Xi is a 2-bend cut. We 
will show fcap(X, ) = 0 mod 2 in Lemma 1 lc of Section 111.2. Thus in either 
case we conclude deg(u) = ter(u) mod 2. In a reduced routing problem we 
also have ter(u) < deg(u) and in a bounded problem we have deg(u) + 
ter(u) = 4 for the vertices u with deg(u) = 3. This proves the second part of 
the claim. 1 

We will next describe procedures Simplify1 and Simplify2, cf. Programs 2 
and 3. In Simplify1 we distinguish two cases, namely the existence of a cut 
X with cap(X) = 1 or the absence of such cuts and the existence of a vertex 
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u with deg(v) = ter(u). Assume first that there is a cut X with cap(X) = 1. 
Since P is good and hence is l-even and satisfies the cut condition for 
X we must have fcap(X)=O. Thus there is a unique net N with 
cross(N, X) = 1. Let e E E be the edge intersected by X and let N = [p,ep,] 
where cross(p,ep,, X) = 1. We remove edge e, reserve it for net N, and 
replace net N by the two nets [pl] and [p2]. A solution for P is readily 
obtained from a solution for the modified problem which we denote by P’. 
We only have to combine the local routings for [pl] and [pz] with edge 
e and obtain a local routing for N. 

PROGRAM 2. Procedure Simplify1 

begin (* P is good * ) 
while there is a cut X with cap(X) = 1 or a vertex v with deg(u) = ter(u) 

do (* P is good *) 
if there exists a cut X with cap(X) = 1 
then let X be a cut with cap(X) = 1 and let N be the unique net 

with cross(N, X) = 1; 
let e be the edge intersected by cut X and let 
N = [pI ep,] where cross(p,ep,, X) = 1; 
remove edge e, reserve it for net N and replace net N by 
nets Cpll and CPA 

else let u be a vertex with deg(u) = ter(o); 
let ei, 16 i < 2, be the edges incident to u and 
let Ni, 1~ i < 2, be the nets incident to u where the edges 
are numbered as shown in Fig. 3 and N, is right-of N2; 
let Nr = [eI p,], where p1 does not use edge e, ; 
remove edge e,, reserve it for net N, and replace net N, by 
net Cpll 

fi 
(* P is good *) 

od 
(* P is good and reduced *) 

end 

p-7 
5 / V e2 

/ / el 

FIG. 3. A vertex u with deg(u) = 2 and the edges incident to it. The face in b? is shown 
hatched. 
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LEMMA 2. The problem P’ defined above is good; i.e., the then-case of 
Procedure Simplifvl maintains the invariant. 

ProoJ A proof will be given in Section 111.4. 1 

Assume next that there is no cut with capcity one but that there is a 
vertex v with deg(v) = ter(v). Then deg(v) = 2 and v is incident to exactly 
one nontrivial face. We will now define two orderings, one on the d edges 
incident to v and one on the d nets incident to v. We will then assign the 
ith edge in the ordering of edges to the ith net in the ordering of nets and 
simplify the routing problem in this way. 

For a vertex v incident to exactly one non-trivial face an ordering on the 
edges incident to v is easy to define. Let ei, 1~ i < deg(v), be the edges 
incident to v ordered counterclockwise around v and numbered such that 
the faces following ei, 1 < id deg(u), in counterclockwise order are trivial. 

We turn to the ordering on nets next. We define this ordering in three 
steps. We first define an ordering on paths, then define the concept of a 
canonical representative of a net and then order nets via their canonical 
representatives. 

DEFINITION 3. (a) Let p, and p2 be local routings with a common 
start vertex U. Then p1 is right-of p, if either 

-pp1=p2 or 

- p1 is a proper prefix of p2 and p2 enters the endpoint t, of p1 
through edge ei and leaves it through edge ej where i > j and 
el, . . . . ed, dE {2,3} is the ordering of the edges incident to t, 
defined above or 

- pz is a proper prefix of p, and p1 enters the endpoint t, of p2 
through e, and leaves it through edge ej where i < j and e,, . . . . ed, 
dE { 2, 3 } is the ordering of the edges incident to t,. 

- p1 and p2 differ in their first edges, p1 starts with edge ei, p2 
starts with edge ej and 1~ i < j d d or 

p1 is a prefix of p2 PI and pz have a cwmrmn prefix p 

pl and pz differ in their first edges 

FIG. 4. The various cases of Definition 3(a). The local routing p1 is right-of local 

routing pz. 
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FIG. 5. A net and its canonical representative. 

-pi and pz have a maximal non-trivial common prefix p; i.e., 
pi = pql and p2 = pq2 and the first edges of q1 and q2 are distinct, 
and the three edges “last edge of p,” “first edge of ql,” “first edge 
of q*” are ordered counterclockwise around their common 
endpoint. 

Figure 4 illustrates this definition. 

(b) Let N be a net. A path p E N is the canonical representative of net 
N if p is a shortest path in N and if p is right-of all other shortest paths 
in N. We denote the canonical representative of net N by can(N), cf. Fig. 5. 

(c) Let N and N’ be nets with a common start vertex terminal U. 
Then N is right-of N’ if can(N) is right-of can(N’). 

Remark. Definition 3(a) is long but there is a simple idea behind it. 
Follow the paths p1 and p2 starting in their common start vertex o. When 
they separate one will proceed to the right of the other one. The special 
cases (one prefix of the other or no common nontrivial prefix) reduce to 
the general case if one artificially introduces a pseudo-edge at each vertex 
w  E B entering w  from the nontrivial face and extends all paths by pseudo- 
edges at both ends. The canonical representative of a net is unique since a 
net has only finitely many shortest representatives and since the relation 
right-of is a linear order for the paths with a common start vertex. 

We are now ready for the else-case of Procedure Simplifyl. Let e,, 
1~ i 6 2, be the edges incident to v in the ordering defined above and let 
Nj, 1 < i< 2, be the nets incident to v, where N, is right-of N,. (Here we 
implicitly assumed that the nets Nj incident to v have v as their start vertex. 
This might require changing the orientation of some nets. If there is a net 
N which has v as its start and end vertex then both orientations have to 
be considered, i.e., N is some N, and N-’ is some N,, i#j.) Write 
N, = [e, p,], where p1 is a path not using edge e,. N1 can be written this 
way because e, can be replaced by an equivalent path of length three. 
Remove edge e, from the routing region, reserve it for net N1 and replace 
net N, by net [p,]. Call the new problem P’, cf. Fig. 6. It is clear that a 
solution for P can be immediately derived from a solution for P’; we only 
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FIG. 6. The else-case of procedure Simplify1 

have to add edge e, to the local routing for [p,] and obtain a local routing 
for N,. 

LEMMA 3. The problem P’ defined above is good, i.e., the else-case of 
Procedure Simplifvl maintains the invariant. 

Proof: A proof will be given in Section 11.4. 1 

Procedure Simplify1 leaves us with a reduced routing problem to which 
we apply Procedure Simplify& cf. Program 3. 

We need some additional concepts. A vertex a = (x, y) of the routing 
region R is called the Zeft upper corner of R if there is no vertex (x’, y’) of 
R with y’ > y or with y’= y and x’< x. We use b to denote the vertex 
b = (x, y - 1) and e* = (a, 6) to denote the vertical edge incident to a. We 
consider l-bend cuts X which go through edge e* and distinguish two 
cases: either there exists a saturated l-bend cut through edge e* (then-case) 
or there exists no such cut (else-case). In the latter case we remove the four 
edges on the boundary cycle of the trivial face to the right of e* (cf. Fig. 7). 

PROGRAM 3. Procedure Simplify2. 

begin (* P is good and reduced *) 
let e* = (a, 6) be the vertical edge incident to the left upper corner a; 
if 3 saturated l-bend cut through e* 
then let X be the leftmost saturated l-bend cut through e* 

let ([p,], [p2]) be the rightmost decomposition with respect to X. 
replace net [plpz] by nets [pl] and [p2]. 

else remove the four edges on the boundary of the trivial 
face to the right of e* 

fi 
(* P is good *) 

end 

FIG. 7. The else-case of procedure Simplify2. 
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LEMMA 4. The else-case of procedure Simplify2 maintains the invariant. 

Proof. A proof will be given in Section 111.4. 1 

Let us consider the then-case next. We observe first that a saturated 
l-bend cut through edge e* must consist of two segments s, and s2 and 
that the second segment runs downwards. This can be seen as follows: 
A horizontal cut through edge e* cannot be saturated since each of the ver- 
tices of degree two in the top row are not terminal of any net and each of 
the I vertices of degree three is the terminal of exactly one net. Hence the 
capacity exceeds the density by at least two. A similar argument shows that 
s2 cannot bend upwards. So s2 must run downwards, Among the saturated 
l-bend cuts through edge e* we choose the one with the maximal segment 
sr. We call this cut the leftmost saturated l-bend cut through edge e*. 

Next consider any net N. A decomposition of N with respect to vertex a 
is a pair ([p,], [p2]), where p1 ends in vertex a, pz starts in vertex a and 
N= [p, pJ. Let ( [pl], [p2]) be a decomposition of net N and let 
([ql], [qJ) be a decomposition of N’ with respect to a. The decomposi- 
tion ([pII, [p*]) is right-of decomposition ([qI], [qz]) if [pz] is right-of 

[q*l. 
We are now ready for the description of the then-case. Let X be the 

leftmost saturated l-bend cut through edge e*. Let 

D = { ( [qI], [qJ); ( [qI], [q2]) is the decomposition with respect to a 

of some net N where either NE JV or NP ’ E JV 

and cross([q,qJ, XI =crWCq,l, -V +cross([Iq,l, JO>. 

Intuitively, in D we collect those decompositions with respect to a of 
the nets which do not provide additional crossings of cut X. Let 
( [pII, [p*]) E D be right-of every other element of D. We call ( [pII, [pz]) 
the rightmost decomposition with respect to X. 

FIG. 8. The then-case of procedure Simplify2. X is the leftmost saturated l-bend cut 
through edge e* and ( [pII, [pz]) is the rightmost decomposition with respect to X. 
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Remark. The set R is not-empty sinced the cut X is saturated. Let 
NEM be a net which goes across X. We can write N= [qre*q,]” with 
E E { - 1, +l>. Then ( [qI], [e*qz]) is an element of D. 

In the then-case we replace the net [p1p2] (or [pIp2]-‘, whichever is 
in JV) by the nets [P,] and [p*], cf. Fig. 8. Call the modified problem P’. 
It is clear that a solution for the modified problem P’ directly yields a 
solution for P. We also have 

LEMMA 5. The problem P’ defined above is good, i.e., the then-case of 
procedure Simplifv2 maintains the invariant. 

ProojI A proof will be given in Section 111.4. 1 

THEOREM 2. Let P, be a solvable even local routing problem. Then our 
algorithm constructs a solution in O(n) iterations of the main loop. 

ProoJ If PO is solvable then P, is good (with respect to PO). We infer 
from Lemmas 2 to 5 that all intermediate problems are good, and hence 
the final problem is good. The set of edges in the final problem is empty 
and hence our algorithm finds a solution for the routing problem. The 
bound on the number of iterations follows from the remark made 
immediately before Definition 2. i 

Theorem 2 implies part (a) of Theorem 1. Clearly, if PO is solvable then 
the cut condition holds. Conversely, if the cut condition holds then the 
cut condition for l-bend cuts holds and P, is good. Thus our algorithm 
constructs a solution. 

III. CORRECTNESS 

We prove the correctness of our algorithm in this section. The section is 
divided into four subsections. The last subsection contains the proof of 
Lemmas 2 to 5 of Section II; the first three subsections contain preliminary 
lemmas. Section III.1 is on cuts and reduced representatives, Section III.2 
gives an alternative definition of the ordering right-of on nets which avoids 
the use of canonical representatives and is more amenable to counting 
densities, and Section III.3 shows that the cut condition for a small subset 
of the l-bend cuts implies the cut condition for all cuts. 

111.1. Cuts and Reduced Paths 

Let C be a cut and let N be a net. By definition of cross(N, C) there is 
a path p E N with cross(N, C) = cross(p, C). Figure 9 shows that for a net 
N and cuts C, and C2 there is not necessarily a single representative PEN 
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FIG. 9. Two cuts C, and C2 and a net N which does not have a common reduced 

representative for both cuts. 

with cross(N, C;) = cross( p, C,), i = 1, 2. We call a representation p E N 
reduced with respect to a set of cuts if cross@, C) = cross(N, C) for every 
cut in the set. In this section we derive sufficient conditions for the existence 
of such a common “reduced” representative. 

Let C be a cut and let F,, . . . . F,,, be the sequence of trivial faces through 
which C goes. Let e(l’)p(‘)e(‘)p(‘) 1 2 2 be the boundary cycle of face F, in clock- 
wise order where e(li) and ey’ are the edges intersected by C, py’ and py’ are 
paths, and ey’ and e’,‘+‘) are the same edge but in opposite orientation. 
Then p1 = ~\‘)JJ\~‘. . .p’;“’ and p2 = p$l)~(2~). . .P$~) are called the two paths 
along cut C, cf. Fig. 10. If x and y are vertices on path p1 (or pz) then 
we call the subpath of p1 (or pz) connecting x and y the path along C 
connecting x and y. 

LEMMA 6. Let C be a cut and let p be a path. If cross(p, C) > 
cross([p], C) then p can be written p=ple, p*e,p,, where e, = (c, d) and 
e2 = (e, f) go across C in opposite directions, p2 does not intersect C, 
cross(p, p4p3, C) = cross(p, C) - 2, and p4 E [e, p2e2], where p4 is the path 
from c to f along C. 

ProoJ The claim is intuitively obvious, cf. Fig. 11. A proof goes as 
follows. Let q E [p] be such that m := cross(q, C) = cross( [p], C) and let 
qO, . . . . qk be a sequence of paths such that q = qO, qk =p, and qi and qi+ I 
are elementarily equivalent, 0 G i < k. We show by induction on i that the 
intersections between qi and C can be labelled by the labels “proper” and 

FIG. 10. A cut C and the two paths along C. 
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FIG. Il. An illustration of Lemma 6. 

“improper” such that the improper intersections can be paired and such 
that 

(1) no pair encloses a proper intersection, 

(2) the pairs form a set of properly nested parentheses, and 

(3) each pair induces a cycle (consisting of the subpath of p connect- 
ing the two elements of the pair and the path along C connecting it) which 
is homotopic to 0 (the faces in M are, of course, the holes in the plane). 
Also at most m intersections are labelled proper. 

For i= 0 all intersections are labelled proper. Let us go from i to i+ 1 
next. We have gi = gfg:q!, gi+ , =gfq:q! and qf(qf)-’ is a boundary cycle 
of a trivial face. Clearly cross(qf. C) = cross(q4, C) mod 2 and 
cross(q?, C) + cross(q:, C) < 2, since C is a simple dual path. We thus have 
to distinguish four cases. If cross(q:, C) = cross(q4, C) =0 then there is 
nothing to show. If cross(q:, C)=cross(q:, C)= 1 then the labelling and 
the pairing is easily modified. If cross(q4, C) = 2 then we pair the two addi- 
tional points of intersection and label them improper. This leaves the case 
cross(q:, C) = 2. If both intersections are labelled proper or if both are 
labelled improper and are paired, then there is nothing to show. 

If one is labelled proper and one improper (call the improper intersec- 
tion x) then we relabel the partner of the improper intersection (call it u) 
proper. Note that y cannot be enclosed by a pair because this pair would 
also contain x (pairs were nested properly in qi) and hence the intersection 
labelled proper in qi because this intersection is an immediate neighbor of 
X. Thus the nesting property is again satisfied. Finally, if both intersections 
are improper then we pair their partners. We show that the new pairing 
satisfies conditions (1) and (2). Note first that if one of the partners is 
contained in a parenthesis then one of the disappearing intersections was 
and hence the other one was also, since the disappearing intersections are 
immediate neighbors. Thus the other partner is also contained and hence 
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property (2) is again satisfied. For property (1) we only observe that any 
proper intersection contained in the newly formed parenthesis must been 
contained in one of the two disappearing parentheses. We leave it to the 
reader to check the claim about 0-homotopy. 

The labelling and pairing with respect to qk immediately yields the 
desired edges e, and e2 and path p2. We only have to consider a pair of 
improper intersections which contains no further pair. 1 

LEMMA 7. Let C be a cut and let p be a path. Then cross(p, C) = 
cross( [p], C) (mod 2). 

Proof By Lemma 6 we can reduce cross(p, C) to cross( [p], C) by 
repeatedly removing pairs of intersections. 1 

Let C and D be two cuts and let p1 and p2 be the paths along C and 
q, and q2 be the paths along D. We say that C and D do not interfere if 
pi intersects D at most once and qi intersects C at most once, i = 1, 2. A set 
of cuts is interferencefree if any two cuts in S do not interfere. 

LEMMA 8. (a) Let C and D be l-bend cuts. C and D do not interfere if 
either C and D have at most one vertex v in common, C uses the dual edges 
d, , d2 incident to v and D uses d3 and d4 incident to v such that d, , d,, d2, 
and d4 are distinct and lie in that order around v or if C = EF and D = EG, 
where F and G are vertex-disjoint except for their common endpoint. 

(b) Let S be an interferencefree set of cuts and let N be a net. Then 
there is a path p E N which is reduced with respect to all cuts in S, i.e., 
cross(p, C) = cross(N, C) for all C E S. 

Proof (a) Obvious. 

(b) Let p E N be such that k := CEE s cross(p, E) is minimal. Assume 
that p is not reduced with respect to some cut CE S. Then p = p,el p2e2 p3, 
where e, = (c, d) and e2 = (e, f) go across C, p2 does not go across C, 
cross(p, p4p3, C) = cross(p, C) - 2, and p4 E [e, p2ez], where p4 is the path 
from c to f along C; cf. Lemma 6. Let D E S be arbitrary. Then cross(p,, D) 
< 1, since C and D do not interfere and hence cross(p, p4 p3, D) < 
cross(p,, D) f 1. Since p1 p4 p3 E [p] we conclude cross(p, p4 p3, D) < 
cross(p, D) from Lemma 7 and hence CEES cross(p, p4p3, E) <k, a 
contradiction. 1 

111.2. Slicings and the Ordering of Nets 

The goal of this section is a more topological characterization of the 
ordering right-of of nets and of the density of a cut. Whilst the notion of 
canonical representative gives us a concise definition of the ordering 
right-of on nets it is of very limited use in density arguments because 
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FIG. 12. A slicing S. We have parent = F,, parent( F2, and parent( F,, 
where F,, is the unbounded face. 

canonical representatives are by definition unique and therefore we cannot 
assume them to be reduced with respect to certain cuts. The alternative 
definition of the ordering given in this section, albeit longer, can be used 
in density and ordering arguments. Throughout this section we assume that 
there is no cut of capacity one. 

DEFINITION 4. A slicing S of the routing region R is a set {C(F); 
FE M} of cuts and a function parent: M--f n;i such that 

(1) C(F) has one endpoint in face F and the other endpoint in face 
parent(F) for all FE M; 

(2) the function parent defines a tree on R with the infinite face 
being the root; 

(3) each cut C(F), FE&~, is a O-bend cut and two cuts C(F) and 
C(G) are vertex-disjoint for F# G. 

Figure 12 illustrates this definition. 

If S is a slicing then the removal of all edges of R which are intersected 
by a cut in S turns the routing region R into a routing region R(S) which 
has only one nontrivial face, the unbounded face, cf. Fig. 13. This follows 
from the observation that for every cut C(F) of the slicing the paths along 
C(F) are also paths in R(S), since the cuts of S are pairwise vertex-disjoint. 

FIG. 13. The routing region R(S), where R and S are as in Fig. 12. 
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FIG. 14. The ordering on Bu C for the example of Fig. 12 and 13. The cyclic ordering is 
indicated by a heavy line with arrows. 

For a cut C(F) let C(F)-’ and C(F)+’ be two new symbols. We use the 
new symbols to “represent” the two sides of the cut C(F). Let 
c= {C(F)-‘, c(F)+‘; FE M} and let B be the set of vertices of R of degree 
three or less as defined in the introduction. We define a cyclic ordering on 
the set Bu C by a clockwise traversal of the boundary of the unbounded 
face of R(S), where C(F)+’ represents the sequence of vertices and edges 
used to reach face F from face parent(F) and C(F) - ’ represents the 
sequence of vertices and edges used to reach face parent(F) from face F. 
Figure 14 illustrates this definition. Note that this ordering is well defined, 
since no node in B can belong to the boundary of two faces in li;i. 
Otherwise, there would be a cut of capacity one. 

We can use slicings to decompose paths (and then nets) into elementary 
pieces. Let p be an oriented path. We can write p = pie, p2e, . .. 
p,,,e,,, pm + 1, where ei goes across a cut in S, say C(F,) and the pi)s do not 
go across cuts in S. Assume further that ei crosses the cut C(F,) in the 
direction from C( F,,) +di to C(Fj,)-4, where dig { - 1, +l>. Then 

(s, C(Fj,)d’), (C(Fjl)-dl> C(Fjz)d2), **.y (C(Fj,,,)dm, ‘) 

FIG. 15. Net Ni connects s and t,. The elementary pieces of NS are (s, C(F,)+‘), 
(C(F,)-‘, ts) and the elementary pieces of N4 are (s, C(F,)+‘), (C(F,)-‘, C(F,)+l), 
(C(F,)-‘, t4). Since C(F,)-‘, C(F,)+‘, fj occur in that order in the cyclic ordering of Bu C 
(cf. Fig. 14), N4 is “right-of” N,. In general, N, is “right-of” N, for i< j, 
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is the decomposition of path p into elementary pieces; here s and t denote 
the start- and end-vertex of p. An elementary piece is an element of 
(B u C)‘. This definition is illustrated by Fig. 15. 

LEMMA 9. Let p and q be equivalent paths and let p and q be reduced 
with respect to all cuts in slicing S. Then p and q yield the same sequence qf 
elementary pieces. 

Proof: Obvious. 1 

Lemma 9 allows us to extend the decomposition into elementary pieces 
from paths to nets. Let N be a net and let PEN be reduced with respect 
to S. Then a decomposition of N is defined as a decomposition of p. 

We are now ready for the alternative definition of the ordering right-of 
on nets with a common start vertex. Let N, be a net with start-vertex s and 
let ai,, . . . . aik, be the decomposition of Ni into elementary pieces, i = 1, 2. 
Then N, is “right-of” N, iff there is a j such that a,/= azI for I< j, 
alj = (u, v), az, = (u, w), where U, v, w  E B u C, v # w, and u, v, and w  occur 
in that order in the cyclic ordering of Bu C (cf. Fig. 15) or if N, = N2. 

Since the equivalence of this definition with our old definition of right-of 
still needs to be verified, we used “right-of” instead of right-of in this defini- 
tion. Also note that the definition of “right-of” is with respect to a 
particular slicing S. We will next show that the orderings right-of and 
“right-of” are the same; this also implies that the ordering “right-of” is 
independent of the particular slicing used in its definition. 

LEMMA 10. Let N, and N2 be nets with common start-vertex s. Then N, 
is “right-of) N, iff N, is right-of N,. 

Proof: The claim is obvious if N, = N,. So let us assume that N, # N, 
and that N, is right-of N,. Since both orderings are linear it suffices to 
show that N, is “right-of” NZ. 

Let a,, . . . . aik, be the decomposition of Ni into elementary pieces. Since 
N, # N2 there is a j such that aI,= uzl for Z<j and alj= (u, v), o+= (u, w) 
with v # w. 

Let can(Ni) be the canonical representative of net Nj. Since canonical 
representatives are shortest representatives they are reduced with respect to 
all O-bend cuts and hence with respect to all cuts in the slicing. We can 
therefore write 

can(N,) = Pi1 eil Pizeiz . ’ . eik, - I Pik, 

where ei, goes across some cut in S and the pi,3 do not go across cuts 
in S. Also, if e, crosses the cut C(F,,) in the direction from C(Fu)4’ 
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to C(Fi,)-4’ then ai, = (C(F,- 1)“d-1, C(F,,)-‘I’) for 2 < 1~ ki, 
clil = (s, C(Fi,)“‘l), and Q,= (C(F,,- i)“+l, ti). Thus F1,= F,, and dr,= & 
for I< j. 

Let h be minimal such that pIhen, #pzhezh. Then clearly h <j. Also, we 
can write plhelh = qr,, and p&2,, =qrzh, where q is maximal with this 
property. Since N, is right-of N2 the path rlh is right-of r2,,, 

CLAIM 1. rlh and rzh are vertex-disjoint except for their common start 
vertex and p,, and p2, are vertex-disjoint for h < 1< j. 

Proof. This follows immediately from the fact that canonical repre- 
sentatives are shortest rightmost representatives and the observation that a 
point of intersection would induce a cycle which is homotopic to 0. n 

Let sil be the start vertex of piI and let t, be the end vertex of pa. Then 
Srh=S2h and Clil=(ti,,Sil+i). Al so s,,#s2, for h<l<j and t,[# tal for 
h < 1~ j, by Claim 1. Observe next that the vertices s,~, tlh, t,, appear in 
that order in a counterclockwise traversal of the boundary of region R(S). 
This follows from Claim 1 and the assumption that pIh is right-of pZh. 

CLAIM 2. The vertices szI, sl,, t,,, t2, appear in that order in a counter- 
clockwise traversal of the boundary of region R(S) for h < I< j. 

Proof We use induction on 1. Let 1, h < I< j be arbitrary. Then path pi, 
connects si, and til and by Claim 1 the two paths pi, and p2, do not inter- 
sect, i.e., pI1 and p2, are two non-intersecting chords of region R(S). We 
conclude that only the four orderings sz,, sr,, t,, and s2,, t,,, s,,, t2, and sal, 
t2,, Sll, tll and s21, t2[, t,,, sll are possible. It remains to argue that si, 
directly follows s2[ in a counterclockwise traversal because this will leave 
only the first possibiility. 

By induction hypothesis the vertices szI-r, si,-i, tll_ i, t2/- I occur in 
that order in a counterclockwise traversal. Also F,,- i = F2,- 1 and hence 
the vertices t,,_ i, t,,- i, s2,, sl[ occur in that order in a counterclockwise 
traversal of the boundary of R(S). Finally, since srl and s2[ lie on the same 
side of the same cut and since the paths can(N,) are reduced, the vertices 
t2, and tl, must follow sn in the counterclockwise travesal. This proves 
Claim 2. i 

We are now ready to complete the proof of Lemma 10. The vertices szj, 
slj, ty, ty occur in that order in a counterclockwise traversal of the bound- 
ary of R(S), szi and slj lie on the same side of the same cut and tlj and t2, 

do not. Hence aii = (u, v), clzj = (u, w), v # w  and U, v, w  occur in the same 
order in the cyclic ordering of Bu C as slj, tlj, tU occur in a counterclock- 
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FO 

FIG. 16. The slicing S of Fig. 12 and two cuts X and Y. S, X, and Y are strongly inter- 
ferencefree. The set L(X) is indicated by a heavy line. 

wise traversal of the boundary of R(S). Thus N, is “right-of” N, and the 
proof is complete. 1 

Lemma 10 justifies that we write right-of instead of “right-of” from now 
on. We will next show that slicings are a very convenient tool for counting 
densities. 

Let X and Y be interferencefree cuts and let S be a slicing. We say that 
S, X, and Y are strongly interferencefree if every cut C E S is vertex- 
disjoint from X and Y, cf. Fig. 16. 

Assume now that S, X, and Y are strongly interference-free, Then cut 
X splits the region R(S) into two parts and in this way induces a partition 
(L(X), R(X)) of B u C. The partition (L(Y), R(Y)) induced by the cut Y of 
B u C is defined analogously. For sets D,, D, c Bu C define dens(D,, D,) 
as the sum over all nets NE JV of the number of elementary pieces 
(x, y) of net N, when ID,n {x, y)l= 1 and ID,n (x, y)(= 1. For 
dens(D,, (Bu C)- DI) we write simply dens(D,). 

LEMMA 11. Let S be a slicing and let X and Y be l-bend cuts such 
that S, X, and Y are strongly interferencefree. Let (L(X), R(X)) and 
(L(Y), R(Y)) be the partitions of B u C induced by X and Y. Then 

(a) dens(X) = dens(L(X)) and dens(Y) = dens(L( Y)) 

(b) dens(L(X)) + dens(L( Y)) 

= &G(L(X) n L(Y)) + dens(L(X) u L(Y)) 
+ 2 dens(L(X) - L( Y), L(Y) - L(X)) 

(c) Let P be a l-even local routing problem, let v be a vertex of degree 
3 and let Z be a 2-bend cut of capacity 3 which separates v from the remain- 
der of the graph. Then fcap(Z) = 0 mod 2. 

Proof: (a) We show dens(X)=dens(L(X)). Let Q be any net 
and let qEQ be reduced with respect to S u (X}. Write 
q=41e192e2~~~4m-1em~14m, where the els cross cuts in S and the q;.s do 
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FIG. 17. Cuts X and Y and the partition (G, H, I, J) of B u C. 

not. Then the 4;s correspond to the elementary pieces of Q. Clearly 
cross(Q, X) is the number of qi which go across X. Moreover, qi goes 
across X iff the corresponding elementary piece has exactly one end point 
in L(X). 

(b) Let G = Z,(X) n L( Y), H= L(X) - L( Y), Z= I,( Y) - L(X), and 
.Z= (B u C) - (L(X) u (L(Y)), cf. Fig. 17. Then 

dens(L(X)) +dens(I#( Y)) 

=&~~(GuH,ZUJ)+~~~~(GUZ,HUJ) 

=dens(G,Z)+dens(G,J)+dens(H,Z)+&iis(H,J) 

+dens(G,H)+dens(G,J)+&iis(Z,H)+dens(Z,J) 

=diiii(G,Zu.ZuH)+dens(GuHuZ,.Z)+2&ii(H,Z) 

= dens(L(X) n L(Y)) + dens(L(X) u L(Y)) 

+ 2 dens(L(X) - L(Y), L(Y) - L(X)). 

(c) The cut 2 consists of three segments sr, s2, sg of length one each. 
Consider the cuts X=s,s; and Y=s3s;, where s; results from s2 by 
extending it beyond s3 until it hits a boundary and s; results from s2 by 
extending it beyond s1 until it hits a boundary. Define the partitions 
(L(X), R(X)) and L(( Y), R(Y)) such that (u> = L(X) n Z.(Y) and let S be 
a slicing such that S, X, and Y are interferencefree. Then 

dens(L(X) n L( Y)) 

=dens(L(X))+dens(l(Y))-dens(L(X)uL(Y)) 

- 2 dens(L(X) - L(Y), L(Y) - L(X)). 

Next note that (L(X) uL( Y), R(X)nR( Y)) is a partition which 
corresponds to a O-bend cut, say U, and that cap(U)= 1 +a + b, 
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cap(X)=2+ 6, and cap(Y)=2+a for some integers a and 6; a is the 
length of s; minus 1 and b is the length of &’ minus 1. Then 

fcap(Z) = 3 -dens(L(X) n L( Y)) 

=(2+b-dens(L(X)))+(2+a-dens(l(Y))) 

-(l +a+b-dens(L(X)uL(Y))) 

+ 2 dens(L(X) - L( Y), L(Y) - L(X)) 

= fcap(X) + fcap( Y) - fcap( U) + 2 dens(L(X) - L( Y), L( Y) -L(X)) 

=Omod2. 1 

Remark. In part (c) of Lemma 11 we prove the evenness of a 2-bend 
cut by expressing it as the intersection of two l-bend cuts. In a similar way 
one can express a k-bend cut as the intersection of two (k - 1 )-bend cuts. 
This suggests that one can prove by induction on the number of bends that 
in a l-even routing problem all cuts have even free capacity, i.e., l-evenness 
implies evenness. Such an inductive proof is not possible, however, because 
the slicing S in part (c) of the lemma does not necessarily exist if Z is an 
arbitrary cut. We want to mention, that arguments similar to the ones used 
in the proof of Lemma 12 can be used to prove that l-evenness implies 
evenness. We do not need that claim in the present paper and therefore do 
not include that proof. 

Lemma 11 will play a major role in Section 111.4. 

111.3. On the Form of Cuts 

This section is concerned with the form of cuts. We will first (Lem- 
ma 12(a)) show that the cut condition for l-bend cuts implies the cut con- 
dition for all cuts. We will then show (Lemma 12(b)) that only O-bend cuts 
and l-bend cuts connecting concave corners (cf. Definition 5 below) need 
to be considered and we will finally show that the leftmost saturated cut 
through edge e* (the reader finds the definition of edge e* in Section II 
immediately before Lemma 4) is a l-bend cut (strictly speaking, we defined 
leftmost cut only with respect to l-bend cuts; Lemma 12(c) justifies this). 

DEFINITION 5. (a) A pair ((u’, v), (a, u”)) of boundary edges of some 
non-trivial face is a concave corner if deg(v) = 4. 

(b) A l-bend cut X=sl, s2 connects two concave corners ((u’, u), 
(u, u”)) and ((w’, w), (w, w”)), if X intersects one edge of each pair, say 
(u’, u) and (w, w’), X is not a O-bend cut, Y := s; , s;, where s; intersects 
(v, u”) and has the same length and direction as s2, and s; intersects (w, w”) 
and has the same length and direction as si, is a cut, and the rectangle 
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FIG. 18. A l-bend cut X connecting two concave corners u and w. 

formed by X and Y contains only vertices of degree 4. Figure 18 illustrates 
this definition. 1 

Remark. Y = s;, s; is a cut if neither of the two line segments s’, and s; 
passes through a non-trivial face. Furthermore, the rectangle formed by X 
and Y contains only vertices of degree 4 iff v and w  are the only vertices 
on the boundary of a non-trivial face which lie inside the rectangle. 

LEMMA 12. Let P be a l-even bounded LRP. 

(a) If there is an oversaturated cut then there is an oversaturated 
1 -bend cut. 

(b) If there is an oversaturated cut then there is an oversturated O-bend 
cut or an oversaturated l-bend cut connecting two concave corners. 

(c) If there is a saturated cut X=s,, . . . . sk, k>3, through edge e* 
then there either exists an oversaturated l-bend cut (not necessarily through 
e*) or a saturated l-bend cut X= s;, s; through e* with s; longer than sl. 

Proof: (a) Let us assume the existence of an oversaturated cut. 
Among the oversaturated cuts let X= sl, s2, . . . . sk be such that k is minimal 
and such that among the cuts with minimal k the length of s1 is maximal 
and among the cuts with minimal k and maximal s1 the total length of X 
is minimal. Let us assume for the sake of a contradiction that X is not a 
l-bend cut, i.e., k> 3. 

CLAIM 1. There is no segment si, 2 < i < k, such that si- 1 and si+ , lie on 
the same side of the line Li supporting si. 

Proof. Let C={i;si-l and s~+~ lie on the same side of the line Li 
supporting si>. For iE C call the side of Li on which si- 1 and si+ I lie the 
crucial side of si. We show first that there is an iE C such that there is no 
segment si which intersects a square one unit away from si and on the 
crucial side of si. 

Assume otherwise. Let i* E C be such that sit has the minimal length of 
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any segment in C. We may assume w.1.o.g. that si. runs vertically and that 
the left side of si. is crucial. By the choice of si. only the segments s1 and 
sk can intersect a square one unit to the left of si*. Let us assume w.1.o.g. 
that s1 does. Then s2 must extend to the left as seen from the common 
endpoint of S, and s2. Hence there must be j, IE C such that sj runs verti- 
cally and the right side of sj is crucial and s, runs horizontally. Let j*, 
I* E C be such that sj* runs vertically, its right side is crucial and sj. has 
minimal length and s,. runs horizontally and has minimal length. Then 
either sj. or So. must have the property claimed. 

At this point we have the existence of an iE C such that no segment sj 
intersects a square one unit away from si and on the crucial side of s;. 
Assume w.1.o.g. that si extends vertically and that the left side of si is 
crucial. 

We now move si to the left (note that each move by one unit decreases 
the capacity without changing the density and hence leaves us with an 
oversaturated cut) until either sip, or si+ 1 becomes empty (contradiction 
to the minimality of k) or there are boundary points immediately to the left 
of si (this might be the case already initially). We now have to distinguish 
four cases, according to the lengths of the segments sip 1 and si+ , . We only 
treat the case that si-, and si+, have both length at least two and leave 
the other cases to the reader. 

The boundary vertices to the left of si lie in h b 1 segments as shown in 
Fig. 19. We consider cuts X, , . . . . X,, + 1 shown in the right part of Fig. 19. 
Then cuts .I’,, . . . . X, are l-bend cuts and X, and X, + 1 have less bends than 
X. Thus fcap(Xi) > 0 for 1 <ii h + 1. Let li be the number of vertices in 
the segment between ai and b, inclusive, 1 < id h. Note that deg(ai) = 
deg(bi) = 4 and hence ter(ai) = ter(bJ = 0. We have 

and 

cap(X)=cap(X,)+ ... +cap(X,+,)+ i (/i-2)+2 
i= 1 

h 

dens(X) < dens(X,) + ... +dens(X,+,)+ 1 (4-z) 
i= 1 

al _-- 
3 

_-_ --_ I- 

FIGURE 19 
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FIGURE 20 

and hence 

fcap(X)>fcap(X,)+ ... +fcap(X,)+fcap(X,+,) 

2 0, 

a contradiction. 1 

We have now shown that an oversaturated cut with a minimal number 
of bends has the form of a staircase (cf. Fig. 20). We may assume that s1 
is horizontal, s1 is vertical, starts at the right end of s1 and extends 
downwards; s3 extends to the right. 

Assume first that s2 intersects no horizontal edge whose right endpoint 
lies on the boundary of a face in a. We can then move s1 one unit to the 
right and obtain a cut x’ with fcap(X’) =fcap(X) and a longer initial 
segment, a contradiction. Thus there are boundary points immediately to 
the right of sl. Let w  be the lowest such boundary point. Then either the 
edge e, directed upwards from w  or the edge e2 directed downwards from 
w  is a boundary edge. 

Xl 

52 
_--- ---- -__ t 4 _---------- 

R2 x2 1 

I , 

9 

FIGURE 21 
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FKXJRE 22 

Case 1. Edge e2 is not a boundary edge. Then e, = (w, z) must be a 
boundary edge. We consider the two cuts shown in Fig. 21. Note that X, 
exists, since w  was chosen as the lowest boundary point to the right of s2. 
We have 

cap(X) = cap(X, I+ cap(Xd 

and 

dens(X) < dens(X,) + dens(X,), 

since vertex w  has degree 4, and hence ter( w) = 0. Also X, has no more 
bends than X, has the same initial segment, and is shorter than X,, and X, 
has one bend less than X. Thus fcap(Xi) > 0 for i = 1,2, and hence 

fcap(X) > fcap(X,) + fcap(X1) 

> 0, 

a contradiction. 

Case 2. The edge e, is a boundary edge and hence s3 cuts only one 
edge. If edge e, is also a boundary edge then we can certainly shorten X 

FIGURE 23 
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FIGURE 24 

and still have an oversaturated cut, a contradiction. So let us assume that 
edge e, is not a boundary edge. Let z be the boundary point which lies 
above w  and is closest to w. Then z either lies above the horizontal line 
supporting s1 or it does not. 

Case 2.1. z lies in the top row of R, cf. Fig. 22. Consider cut Y as 
shown in Fig. 23. Then dens(X) = dens(Y), since ter(w) = 0 (note that 
deg(w) = 4) and cap(X) = cap(Y). Thus Y is oversaturated and a l-bend 
cut, a contradiction. 

Case 2.2. z does not lie above the horizontal line supporting s1 (cf. 
Fig. 24). Consider cuts X, and X, as indicated in Fig. 25. We have 
cap(X) = cap(X,) + cap(X,) and dens(X) < dens(X,) + dens(X,). Also X, is 
l-bend and X, has. as many bends as X, the same initial segment and is 
shorter. Thus fcap(X,) >, 0 for i = 1,2, and hence fcap(X) > 0, a contra- 
diction. 

FIGURE 25 
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(a) The case v = w (b) Cuts X1 and X2 

FIG. 26. Cuts X, and Xl. 

(b) Let us assume that there is no saturated O-bend cut or over- 
saturated l-bend cut connecting two concave corners but there is an over- 
saturated l-bend cut. Let X= si, s2 be an oversaturated l-bend cut of mini- 
mal length. We may assume w.1.o.g. that s1 is horizontal, s2 is vertical, and 
the upper endpoint of s2 and the right endpoint of s, coincide. Let (u, o’) 
be the vertical boundary edge intersected by s1 with u below u’ and let 
(w, w’) be the horizontal boundary edge intersected by s2 with w  left of w’. 

Assume first that U= w. Then cap(X)=2 and dens(X)> 3. Since 
deg(v) = 4 (deg(u) = 2 implies dens(X) d ter(u) < deg(u) and thus is 
impossible; deg(v) = 3 implies the existence of an O-bend cut of capacity 1, 
and hence density 1, and thus is impossible) and since X is not a O-bend, 
the vertex u must lie on the boundary of at least two non-trivial faces, cf. 
Fig. 26a. Note that these faces are not necessarily distinct. Form Y = s; , s; 
as described in Definition 5. If Y is a cut, i.e., u lies on the boundary of 
exactly two non-trivial faces, then all conditions of Definition 5 are satisfied 
and X connects two concave corners. If Y is not a cut, i.e., u lies on the 
boundary of three non-trivial faces, then consider the two O-bend cuts 
Y, = s; and Y, = s;. We have dens( Y,) + dens( Y,) = dens(X) 2 3, since 
ter(u) = 0 and hence the existence of an oversaturated O-bend cut. This 
completes the discussion of the case u = w. 

Assume next that u # w. The cut X starts in some non-trivial face, say F. 
Let (u, u”) be the other boundary edge of F incident to u. Define edge 
(w, w”) analogously. We observe first ((u’, u), (u, u”)) and ((w’, w), (w, w”)) 
are concave corners. Otherwise we could obtain shorter saturated cuts by 
arguments as in Claims 1 and 2 of part (a). Let Y = s;, s; be defined as in 
Definition 5. If Y is not a cut or if Y is a cut and the rectangle formed by 
X and Y contains a vertex of degree less than four then the rectangle 
formed by X and Y must contain a boundary point different from u and w. 
Let z be such a boundary point with maximal y-coordinate and, among 
such points, with maximal x-coordinate. Then deg(z) = 4 and hence 
ter(z) = 0. Consider the cuts X, and X, shown in Fig. 26b (the case that the 
y-coordinate of z lies strictly between the y-coordinates of u and w  is shown 
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in that figure. The case that z has the same x-coordinate as u and the same 
y-coordinate as w  is similar). Both of them are l-bend and shorter than X. 
Hence fcap(X;) >, 0 for i = 1,2. Also, fcap(X) >, fcap(X,) + fcap(X,) >, 0, a 
contradiction. This proves part (b). 

(c) Among the saturated cuts through e* let X= sl, . . . . sk be such 
that k is minimal and such that among the cuts with minimal k the length 
of s1 is maximal and among the cuts with minimal k and maximal s1 the 
total length of X is minimal, cf. part (a). Let us assume also that there is 
no oversaturated cut. We will now argue almost as in part (a). The 
differences are as follows. In Claim 1, from the fact that 0 > fcap(X) > 
fcap(X, I+ ... +fcap(;lr;,+,) we conclude the existence of an oversaturated 
cut. In Claim 2, Case 1, we infer that X, is saturated, contradicting the 
choice of X. In Case 2.1, we conclude that Y is saturated and has the 
desired form, and in Case 2.2, we conclude that X, is saturated, contra- 
dicting the choice of X. 1 

111.4. Proofs of Lemmas 2 to 5 

In this section we will finally prove the correctness of our algorithm by 
filling in the proofs of Lemmas 2 to 5. Throughout this section we will use 
the following convention on notation. P, P’, and PI’ are local routing 
problems. If X is a cut then dens(X), dens’(X), and dens”(X) denote the 
density of X with respect to P, P’, and P”, respectively. Similar conventions 
are used for the capacity and free capacity. 

LEMMA 2. The then-case of procedure Simplify1 turns a good LRP into 
a good LRP. 

Proof Let P be a good LRP and let X be the cut of capacity one which 
was chosen in the then-case. Let P’ be the modified problem. Then 
cap’(Y) = cap( Y) and dens’(Y) = dens( Y) for all cuts Y # X. This shows 
that P’ is l-even and satisfies the cut condition for all l-bend cuts. Also a 
solution to P’ directly yields a solution for P as argued in Section II and 
P’ is bounded. Thus P’ is good. 1 

LEMMA 3. The else-case of procedure Simplifvl turns a good LRP into a 
good LRP. 

Proof Let P be a good LRP having no cut with capacity one and let 
u be a vertex with deg(u) = ter(u) = 2. Let ei, 1~ i G 2, be the edges incident 
to u and let N;, 1 < i < 2, be the nets incident to U. The numbering is as 
defined in Section II. Let N1 = [e, p,], where p, does not use edge e,. It 
was argued in Section II that such a representation of net N, exists. We 
obtain problem P’ be removing edge e, and replacing net N, by net [p,]. 
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FIGURE 27 

In order to show that P’ is good we consider an intermediate problem P”. 
P” is obtained from problem P by replacing net N, by nets [e,] and [pi] 
and leaving the routing region unchanged. It is clear that P’ is good if P” 
is good, since P’ results from P” by removing net [er] and edge e,. It 
therefore suffices to show that P” is l-even and satisfies the cut condition 
for l-bend cuts. 

Let Y be any l-bend cut. If Y does not go through edge e, then 
fcap”( Y) = fcap( Y) E 2 . N, and we are done. So let us assume that Y goes 
through edge e,. Then cross( [p,], Y) = cross(N,, Y) + E with E E { + 1, -1) 
and hence fcap”( Y) = fcap( Y) - E - 1. We conclude that P” is l-even and 
fcap”( Y)E~ .N, if either E = -1 or fcap( Y) >O. This leaves the case 
fcap( Y) = 0 and cross([p,], Y) = cross(l\r,, Y) + 1. Let 2 be the cut 
obtained from Y by replacing the dual edge d(e, ) by the dual edge d(e,), 
cf. Fig. 27. Then cap(Z) = cap(Y). 

We claim that dens(Z) = dens( Y) + 2 and hence fcap(Z) = 
fcap( Y) - 2 = -2. Thus Z is oversaturated and hence the problem P was 
not good by Lemma 12(a). It remains to show that dens(Z) = dens( Y) + 2. 
Let S be any slicing such that S, Y, and Z is strongly interferencefree and 
let ail, --, “i!c,. be a decomposition of Ni with respect to S, 1 <id 2. 
Define partitions (L(Y), R(Y)) and (L(Z), R(Z)) of Bu C such that 
u E R( Y) n L(Z). Then the cuts Y and Z partition B u C into the three sets 
{u}, L(Y), R(Z), cf. Fig. 27. Also, c(i, = (u, w,), where wi E R(Z), since 
cross( [pII, Y) = cross(N,, Y) + 1. Next observe that N, is right-of Nz 
and hence clzl = (u, wz), where w2 E R(Z). This implies dens(Z) = 
dens(Y) + 2. 1 

LEMMA 4. The else-case of procedure Simplify2 maintains the invariant. 

Proof. Let P be a reduced good routing problem and let e* = (a, 6) be 
as defined in Section II. In the else-case there is no saturated cut through 
edge e*. We obtain problem P’ by deleting the boundary cycle of the trivial 
face to the right of e* (cf. Fig. 7). We need to show that P’ is good. Let Y 

SSZb:55:I-5 
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be any l-bend cut. If Y does not start in any of the new dual sources then 
fcap’( Y) = fcap( Y) and we are done. If Y does start in one of the new dual 
sources then Y can be extended to a cut Z through e* and to a l-bend cut 
Z’ in problem P with cap(Z) = cap(Z’) = cap’( Y) + 2 and dens(Z) = 
dens(Z) = dens’( Y). Thus fcap’( Y) = fcap(Z) - 2 = fcap(Z’) - 2. Since P is 
l-even, fcap(Z’) and hence fcap’( Y) are even. Also, by Lemma 12(c) there 
is no saturated cut through edge e* and hence fcap(Z) >O. This implies 
fcap’( Y) > -1 and since fcap’( Y) is even, also fcap’( Y) > 0. Thus P’ is 
good. 1 

LEMMA 5. The then-case of procedure Simplify2 maintains the inuariant. 

Proof: Let P be a reduced good routing problem and let e* = (a, 6) be 
as defined in Section II. Let X be the leftmost saturated l-bend cut through 
edge e* and let ([pII, [p2]) be the rightmost decomposition of any net 
with repsect to X. We obtain the problem P’ from the problem P by replac- 
ing the net N= [p, p2] by the nets [p,] and [pJ. It is clear (cf. Sec- 
tion II) that a solution for P can be obtained from a solution for P’. It 
remains to show that P’ is l-even and satisfies the cut condition for l-bend 
cuts. Note that since P is reduced we have ter(a) = ter(c) = 0 and ter(u) = 1 
for all other vertices o between a and c in the top row. While proceeding 
from P to P’ we change the ter-value only for vertex a, i.e., ter’(a) = 2, 
ter’(c) = 0, and ter’(u) = 1 for all other vertices u in the top row. 

Let Y be any l-bend cut. Let qie [pi] be such that cross(ql, Y) = 
cross([pi], Y). Then q1q2E [plpZ] and hence cross(q,, Y)+cross(q,, Y) 
=cross(q, q2, Y) mod 2 = cross( [p,pz], Y) mod 2 by Lemma 7. This shows 
that the problem P’ is l-even. 

We turn to the cut condition next. Let us assume for the sake of a con- 
tradiction that the l-bend cut Y is oversaturated, i.e., fcap’( Y) < 0. We will 
next show in a series of lemmas that there is also an oversaturated cut of 
a very restricted form. 

LEMMA 13. There is an oversaturated cut (in P’) which is either O-bend 
or connects two concave corners. Furthermore the cut does not go through 
edge e’, where e’= (c, d) is vertical and c has maximal x-coordinate among 
all vertices conected to a by horizontal edges; cf: Fig. 28. 

Proof: The first claim follows immediately from Lemma 12(b) and our 
assumption that there is an oversaturated cut. So let us assume that the 

FIG. 28. Vertices a. b, c, d and a O-bend cut Y. 
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FIG. 29. The cuts Y and Z. 

oversaturated cut Y is either a O-bend cut or a l-bend cut which connects 
two concave corners and that Y goes through edge e’. In the former case, 
we have ter’(a) = 2, ter’(c) = 0, and ter’(v) = 1 for all other vertices u 
between a and c in the top row. Hence fcap’( Y) > 0, cf. Fig. 28. In the latter 
case Y consists of a horizontal segment s1 through edge e’ and a vertical 
segment s2 directed downwards. We claim that the O-bend cut Z obtained 
from s2 by extending s2 by one edge at its top is also oversaturated, cf. 
Fig. 29. Let I be the length of segment si. Then dens’(Z) 2 dens’f Y) - 
(/- l), since all vertices u above s1 except c have ter(u) = 1 and ter(c) = 0. 
Also cap(Z) = cap( Y) - 1+ 1 and hence fcap’(Z) = fcap’( Y) < 0. This shows 
that we have a cut of the desired form which does not go through 
edge e’. 1 

By Lemma 13 we may assume that the oversaturated cut Y does not go 
through edge e’ and is either a O-bend cut or a l-bend cut which connects 
two concave corners. In the latter case the cut Y cannot intersect the top 
row, since no edge of the top row participates in a concave corner. 

LEMMA 14. X and Y do not interfere. 

Proof. We show that X and Y satisfy the hypothesis of Lemma 8(a). If 
Y has a vertex in common with the horizontal segment of X then Y must 
be either O-bend or must go through edge e* (note that Y does not go 
through e’ and is O-bend if it intersects the top row.). In either case the 
hypothesis of Lemma 8(a) is clearly satisfied. If Y does no have a vertex in 
common with the horizontal part of X then the hypothesis is also satisfied. 
So X and Y do not interfere. 1 

Let q E [p, pJ be reduced with respect to X and Y. Write q = e, e, q2, 
where q1 is the maximal prefix of q such that cross(q,, X) = cross([p,], X). 
Then the edge e, = (u, w) crosses the cut X. Let rl be the path from v to 
a which runs along X and let r2 be the path from b to w  which runs along 
X, cf. Fig. 30. Then [p,] = [q, rl] and [p2] = [e*r,q, J. Since X and Y do 
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FIGURE 30 

not interfere, the path li, i = 1,2, can cross Y at most once. Thus 
cross([p,], Y)+cross([pJ, Y)<cross(q,rle*r2q2, Y)<cross(q,e,q,, Y)+3 
=cross(q, Y)+ 3 and, since q1r,e*r,q2 and q are equivalent, we even 
have cross(q, r,e*r,q,, Y) < cross(q, Y) + 2 by Lemma 7. This proves 
fcap’( Y) 2 fcap( Y) - 2 and hence fcap( Y) = 0, fcap’( Y) = -2. Recall that 
we assumed fcap’( Y) < 0. Also the cuts X and Y cannot be vertex-disjoint 
because then cross(q,r,e*r,q,, Y)=cross(q,e,q,, Y) and hence 
fcap’( Y) = fcap( Y) > 0. 

LEMMA 15. X and Y have exactly one vertex in common. 

Proof: Let us assume that X and Y have more than one vertex in com- 
mon. Assume first that Y does not go through e*. Since X and Y do not 
infer, we conclude that the vertical segments of X and Y have a common 
tail. Also at most one of the paths rl and r2 can intersect Y and none of 
them does if e, does not intersect Y. Hence cross(q,r,e*r,q,, Y)< 
cross(q, e, q2, Y) and hence fcap’( Y) > fcap( Y), a contradiction. 

Let us assume next that Y goes through edge e* and that the horizontal 
segment of Y is not shorter than the horizontal segment of X. Then either 

“ I  a======================i------~ 

!Ts 

I  

I  

FIG. 31. The paths r,, rz, and r3 
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X= Y and hence fcap’( Y) =fcap( Y), a contradiction, or X is not the 
leftmost saturated cut, a contradiction. This leaves the case that Y goes 
through e* and has a shorter horizontal segment than X. Then 
cross(q,r,e*r,q,, Y) =cross(q, Y) +2 is only possible if the edge 
e, = (0, w) does not cross Y and hence the path r2 does. Consider the 
path r3 shown in Fig. 31. It connects a and w  and does not cross Y. 
Also [pl] = [qlrl] and [pz] = [r,q,] and hence cross([p,], Y)+ 
cross( [pa], Y) < cross(q, rl r,q,, Y) = cross(q, Y). Thus fcap’( Y) = fcap( Y), 
a contradiction. i 

At this point we severely restricted the shape oithe cut Y: Y has exactly 
one vertex u in common with X and X and Y do not interfere. 

Let S be a slicing such that S, X, and Y are strongly interferencefree. 
Note that S exists because Y is either O-bend or l-bend connecting two 
concave corners, and hence every face can be connected by a sequence of 
O-bend cuts with the unbounded face. We split X at vertex u into pieces X, 
and X, and Y at vertex u into pieces Y1 and Y2, where X, goes through 
edge e* and X,, Y,, X2, Y, occur clockwise around v. Let Z, =X, Y, and 
Z2= X2 Y, and let (L(X), R(X)) and (t(Y), R(Y)) be the partitions of 
B u C induced by the cuts X and Y, where u E L(X) n L( Y), cf. Fig. 32. 
Then 

dens(X) + dens( Y) = dens(L(X)) + dens(l( Y)) 

=&iis(L,(X)nL( Y))+dens(L(X)uL(Y)) 

+ 2 dens(l( X) - L( Y), L( Y) - L(X)) 

= dens(Z,) + dens(2,) 

+ 2 dens( L( X) - L( Y), L( Y) - L(X)). 

Suppose now that dens(L(X) - L( Y), L(Y) - L(X)) = 0. Then fcap(Z,) + 
fcap(Z,) = fcap(X) + fcap( Y) = 0 and thus either fcap(Z,) Q 0 or 

FIG. 32. The cuts X. Y, Z,, and Z, 
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fcap(Z,) < 0. In the former case there is a saturated l-bend cut through e* 
with a longer horizontal segment than X by Lemma 12(c), a contradiction 
to the choice of X; and in the second case we have a contradiction to the 
invariant by Lemma 12(a). 

It remains to show that dens(L(X)-L( Y), L( Y)-L(X))=O. Assume 
otherwise. Let (x, y) be an elementary piece of some net Q with 
x E L(X) - L(Y) and y E L(Y) - L(X). We can decompose Q with respect 
to vertex a into ([ql], [q2]), where (a, y) is the first elementary piece of 
[qz]. Let (a, z) be the first, elementary piece of [p2]. Since ri and r2 inter- 
sect Y (recall that fcap’( Y) = -2) we must have z$ L( Y) - L(X). Thus 
decomposition ([ql], [qJ) of Q is right-of decomposition ([p,], [PJ) 
of N, a contradiction to the choice of N. This completes the proof of 
Lemma 5. 1 

IV. IMPLEMENTATION 

The input to our routing algorithm is a routing region R and a set JI’ 
of nets. The routing region is given by its set of vertices and edges and their 
embedding into the plane and each net NE J+‘” is given by some repre- 
sentative rep(N) EN. We use r to denote the number of vertices of R and 
m to denote the total length of the representatives rep(N). Then r+m =n. 

In the implementation we represent nets by their decomposition with 
respect to a particular slicing S which we define next. For each face FE M, 
C(F) is a O-bend vertical cut extending downwards from F. This choice 
ensures that S and X are vertex-disjoint for any l-bend cut X through 
edge e*. 

The implementation is a fairly direct realization of the algorithm of 
Section II. The major question left open there is the choice of the data 
structures used to represent nets. We use the following data structures: 

(1) Each net is represented in both its orientations by the linear list 
of its elementary pieces. The two occurrences of any elementary piece in its 
two orientations are linked. 

(2) For each element u E B u C we have a linked list of all occurren- 
ces of elementary pieces (u, w). 

LEMMA 16. (a) The data structures can be constructed in time O(n) 
from the input. Moreover, if the problem is solvable then their space require- 
ment is O(r). (b) The cyclic ordering on B u C can be computed in time O(r). 

Proof. (a) Color the edges of R which are intersected by some cut in 
S red and color all other edges black. Then trace the representatives 
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rep(N), NE JV, and decompose them into elementary pieces. Finally, 
reduce the decomposition by the operation: 

Replace(u, WY’), (C(F)-“, WY’), (C(F)4 w) by (0, w); 

i.e., eliminate unnecessary crossings with slicing cuts. All of this takes time 
O(r +m) = O(n). For net NEM let I(N) be the number of elementary 
pieces in the decomposition of N. Clearly, every path p E N has length at 
least I(N) and hence E (1(N); NE J” > = O(r) if the problem is solvable. 

(b) In order to compute the cyclic ordering on B u C we remove all 
edges intersected by a cut in S (the red edge of part (a)) and then perform 
a clockwise traversal of the boundary of the unbounded face. All of this 
clearly takes time O(r). 1 

We argued already that there are at most U(r) calls to procedures 
Simplify1 and Simplify2. We will show below that a call Simplify1 has cost 
O(( 1 + k)r), where k is the number of edges of R which are removed by the 
call and that a call of Simplify2 has cost O(r). We will also show that a call 
of Simplify1 increases the number of elementary pieces by at most k and a 
call of Simplify2 increases the number of elementary pieces by at most one. 
Thus the number of elementary pieces is always O(r). Note that it is O(r) 
initially by Lemma 16, if the problem is solvable. Thus total running time 
is U(n + r2) = U(n’) and Theorem l(b) is shown. 

LEMMA 17. A call of Simplify1 has cost 0((1 + k)r), where k is the 
number of edges of R which are removed by the call. Also the number of 
elementary pieces is increased by at most k. 

ProoJ: We first check whether there is a cut of capacity one (by inspect- 
ing all dual edges) or a vertex u with deg(u) = ter(u) (by inspecting all ver- 
tices). This takes clearly time O(r). Assume first that there is a cut, say X, 
of capacity one. Let us assume further that X is not a slicing cut; the case 
that X is a slicing cut is simpler and therefore left to the reader. We show 
first how to find in time O(r) the elementary piece which goes across X. 
The cut X divides B u C into parts ,5(X) and R(X). In time O(r) we can 
clearly label the elements of L(X) red and the elements of R(X) black. We 
then only have to run through all elementary pieces and check the color of 
the endpoints until a bicolored piece is found. We next split this elementary 
piece at the edge intersected by X and remove this edge, say f, from the 
routing region. The edge f separated two faces F and G. If F= G then we 
are done. If F# G then we may assume w.1.o.g. that F is not an ancestor 
of G with respect to the function parent (cf. Definition 4 in Section 111.2.). 
We have to remove the cut C(F) from our set of slicing cuts and hence to 
change the decomposition into elementary pieces of all nets. This can be 
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done easily in time O(r). We only have to replace all pairs (x, C(F)d), 
(C(F)-d, y) of elementary pieces by the single elementary piece (x, y). 

Assume next that there is no cut of capacity one but a vertex u with 
deg(u) = ter(u). We first number the elements of B u C in counterclockwise 
order starting at some arbitrary vertex. Using this numbering one can 
decide the cyclic ordering of three elements u, u, w  of B u C in time 0( 1). 
It is now easy to find the rightmost net starting in u by tracing the nets and 
always selecting the rightmost possible continuation. Again this clearly 
takes time O(r). 1 

LEMMA 18. A call of Simplify2 takes time O(r). Also the number of 
elementary pieces is increased by at most one. 

Proof Let Xi be the l-bend cut through edge e* where the horizontal 
segment has length exactly i. We can clearly compute cap(X,) for all i in 
total time O(r). We will next show how to compute dens(X,) for all i in 
time O(r). Number B u C in counterclockwise order starting at vertex b. 
Let (Li, R;) be the partition of Bu C induced by Xi with b E Li. Then 
Li G Li+ , for all i and hence 

dens(;k;+ i) = dens(l,+ 1, Rj+ 1) 

=dens(Liu(L,+,-L,), R,+l) 

= dens(l,, Ri+ 1) + dens(l,+ i - Li, Ri+ ,) 

=dens(l,, Ri-(L,+,-L,))+dens(l,+,-Li, R,+l) 

= dens(Xi) - dens(li, Lj+ 1 - Li) + dens(l,+ i - Li, Rj+ 1). 

Thus dens(X, + i) can be computed from dens(Xi) in time proportional to 
the number of elementary pieces incident to Li+ , - Li. Note that using the 
numbering of B u C one can decide in time 0( 1) whether an element of 
B u C belongs to Li or Ri+ i. Thus dens(X,), dens(X,), . . . can be computed 
in time O(r) once dens(X,) is known. Finally dens(X,) can be computed in 
time O(r) by checking all elementary pieces. 

We have now computed fcap(Xi) for all i in time O(r). If no Xi is 
saturated then we are almost done. We only have to remove the four edges 
on the boundary cycle of the trivial face to the right of e*. Also if this 
merges two nontrivial faces then we have to remove a slicing cut as 
described in the proof of Lemma 17. Otherwise let X be the leftmost 
saturated cut through e*. We first find all CL’S going across X in time O(r) 
and then trace nets starting with these pieces in order to find the rightmost 
decomposition. This is done as follows: Let (ui, w,), (u,, w,), . . . be the 
pieces which go across X with uje R(X), wje L(X). These pieces can be 
found in time O(r) by first coloring the elements of L(X) red and the 
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elements of R(X) black and then checking all elementary pieces. Each such 
piece (vi, wi) defines a decomposition (p,, qi) of some net with respect to 
the cut X. For two decompositions (p,, qi) and (p,, qi) we can clearly 
determine which one is right-of the other one in time min(l(q,), l(qj)) by 
simply tracing qi and qj. Here, l(q,) is the number of elementary pieces qi 

consists of. Thus the rightmost decomposition can be computed in time 
WC 4qJ)= W). I 

V. CONCLUSION 

We showed that the local routing problem for two-terminal nets is 
solvable in quadratic time. Recently, an alternative and considerably more 
complex algorithm with linear running time O(n) has been found; cf. the 
first author’s Ph.D. thesis [K] and [KM2]. In [K] it has also been shown 
that the technique described above can be applied almost directly to other 
grids like the hexagonal grid and the octo-square grid, which are based on 
the square grid extended by diagonals in one or both directions. There are 
three major open problems: 

(1) Allow more general routing regions than grid graphs. In 
particular, prove a similar result for arbitrary planar graphs. 

(2) Extend the result to nets with more than two terminals. It is 
known [S], that multiterminal net routing is NP-complete. An approach 
for the multiterminal net routing might be to partition each multiterminal 
net into a collection of two-terminal nets and then to use the result in this 
paper as a heuristic. To find a good approximation algorithm is still open. 

(3) Construct layouts which are provably 3-layer wirable. Using 
Brady and Brown’s result we can only guarantee a 4-layer wiring. But for 
very simple routing regions (channels) [PL] we know how to construct 
layouts which are 3-layer wirable. 
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