VLSI Complexity, Efficient VLSI Algorithms
and the HILL Design System

Thomas Lengauer and Kurt Mehlhorn

A 83/03

Fachbereich 10
Universitdt des Saarlandes
D-6600 Saarbriicken
West Germany

VLSI Conmplexity, Efficient VLST Algorithns and the HILL

Design System"

by Th. Lengqauer * K. Mehlhorn '

FB 10
Unfversitit des Saarlandes
D-6600 Saarbriicken

AB3/03

July 1983

Research partially supported by Deutsche Forschungsge-
neinschaft under grant Srs 124, Teilprojekt B2

This paper is & written susmary of a seguence of talks
givon at the International Professorship in Computer
Science: Algorithmics for VLSI, given by the sccond
author. The Internaticnal Professcorshlp touvk place at
the Université Catholique de Louvain, Nov. 82 - May 83
and was funded by IBN Belgium. The paper will appear
in the proccedings of the International Professorship.

0.

3.

Introduction

A Complexity Theory of VLSI

1. The VLSI Model

2. Communication Complexity

3. Extensions and Related Results

Efficient VLSI Algorithns

The HILL Design Systenm
1. HILL Layout Languacge and Graphics Editor
2. Compaction in HILL
1. Efficient Constraint Generation
2. Efficient Constraint Resolution
3. Hierarchical Comgaction
3. The HILL Simulator

O. INTRODUCTION

In this paper we discuss the relation of algorithms and
VLST in two ways: algorithms for VLS1 design and algorithms
implemented in VLSI.

In the third chapter we will discuss the main parta of tha
HILL design systen which 18 under developeent at the uni-
versity of Saarbricken. The main parts are the laycut spec-
ification language, the compacter and the switch-level
sinulator. The HILL layout lanquage provides a convenient
way of describing a layout synbolically either by a HILL
program or by an interactive graphics session. A HILL pro-
gran describes a layout at the level of stick diagrans
enhanced by extaensive means for structuring a design hier-
archically. The level of stick diagrams was used previously
In vystems like CABBAGE, STICKS and NULGA. In contrast to
HILL these systens are graphics oriented and can therefore
support only linited mechanisms for atructuring the design,
mainly congosition and simple fteration. In contrast to

that HILL cffers the full power of a hiyh level programming
lanyuage (HILL is a PASCAL extension): in particular it
offergs recursion, iteration and fully pararmcterized designs.
Recursfion and iteration are central to (softwarc) algorithm
design and we believe that they will be equally important
for hardware design. We give some ccncrete exanples below

to support this clain. The compacter takes a stick diagcam
and produces coppacted mask data from {t, Compaction in HILL
iz constraint bhased., We will discuss how to extract a mini-
mum system of constraints from the symbolic layout and how
to solve constraint systems efficiently. The HILL simulator
is a switch-level simulator. We discuss the underlying mathe-
matical mcdel of MOS circuit behavicor and show how to derive
an efficient sinulation algorithm from the model. The sin-
ulator is correct with reapect to the model.

-3-

VLSI design systens are ueged to implenent digital systens,
i.e. to realize algorithms {n hardware. The sccond chapter
is devoted tc efficient VLSI algorithms for the basic arith-
metic functicns. In particular, we will describe a multi-
plier for n bit binary numbers which has area A = O(nZ),
delay T = 0{1og n) and period P = 0O(1).

Is this a good design? We can infer from the first chapter
on VLSI conplexity theory that it is. One of tha results
derived in that chapter and duve to [BX 81, V 80) is that
Ap? = a(n?) for every chip which can multiply. More gen-
erally, we will present a theoretical model of VLSI compu-
tation and methods for deriving lower bounds on the com-
plexity of concrete problems such as multiplication and
addition. Moreover, we will compare the relative efficiency
of various modes of computation, namely deterministic vs.
randomized, in that model.

I. A CCMPLEXITY THEORY FOR VISI

The first chapter is devoted to a complexity theory for
VLSI computations. It is based on a theoretical mnodel of
VLSI computations which captures the essential features of
the technoleqgy, in particular {ts planarity, but abstracts
fron tha technological details. With respect to this model
we derive two typaes of results

a) lower bounds on the complexity of important functions,
e.qg. shift and multiplication

b) relations between different modele of computation, e.q.
deterministic va. randomized computation, influence of

the I/C-convention, influence of the propagaticn delay
assunption.

VI.SI complexity thaeory originates with Thompson's Ph.D.
thesis (T 80) which contains theorems 1, 2 and 4 Lelow.
A number of researchers later extended his results.
Specitic references are given below.

1.1 The VLSI Model

Cur VLSI nodel i1is based on Boolean circuits. This choice
iz adequate also for modelling more general "multi-direc-
tional” VLSTI structures, €.9. buses [ILM 81],

Cefinition 1t A chip x = (I,A,8) consists of three struc-
tures:

a) The cirewit T: A synchroncus Boolean circufit with feecd-
back and unbounded fanin. Formally, this {5 a directed
bipartite graph [= (V,E) where V 1{is partitioned in-
to a set S§ of switches and a sat W of vires. Here
S =PuG where P 13 a get of porta labelled in or
out and G 15 a set of gates labelled and, or, nand, or
nor. For s e M, If (s,w) €6 E then w 1is called an
output of s, {f (vw,8)¢c E then w 138 called an {rput
of 5. All gates have out-degree 1, all wires have in-
degree 1. Each input port has one input and one output,
Zach output port has two inputs and no output. The “addi-
tional”™ Lnput signal for the ports 1s an enable signal
computed on the chip that activates the port.

b) The layeut A: The layocut maps every vertex in the circuit

into a compact ccnnected region in the plane. Furthermore,
cach point in the reqion lies inside some Cartesian square
of side length X > O that s complaetely contained in the
region. {(This provision models the finite resolution of
the fabrication process for VLSI chips,) Each point in the
planc bolongs to the (nterior of at most v > 2 rxeglona.

(The paramecter v is another fabrication process specific
constant representing the number of functional layeéera2 on
the chip. Since v > 2 also non-planar circuits [can
be laid out.,) Two regions touch exactly if the vertices
they ropresent are neighbours in I, (We say that regions
R, and R, touch if R, N Ry, + @ but R] N R) = ¢ , where

1 " Ry
R] , K; are the interiors of R, T0sp. R,.)

c] The maruael A: The nanuval is a set of directions for thae
communicaticon between the chip and {38 énvironment. 1t con-

tains for every input port a sequence of nunbers that
identify the input bits that enter through this port. The
sequance also determines the order in which the input bits
enter. When its enable signal is raised the port requests
the next input bit in the sequence to enter. Analogously,
for cach output port the manual contains a scquence of num-
bers identifying the output bits produced at that port and
their order. When ({ts enable signal 18 raised the port
produces the next output bit in the sequence.

After defining all components of the chip we can define the
operation of the circuit. To this end we assoclate with each
port 8 word w € B, B = {(0,1), that we call its htstory. Fur=
thernore, ve label each wire with an initial Boolean value
frcm B U {X). (X stands for the undefined Boolean value,
OAX =0, 1 vX=1,0vXa=1AXS=X.) Such a labelling we
call a state Oof the circuit., The initial state is most often
the completely undefined state. In the i-th cycle the circuie
does the following: Each gate "reads® the values on all its
input wires and computes the Becolean operation given by ite
label. The resulting value is put on its cutput wire. Each
input port puts an X on its output wire if its enable signal
is O , otherwize it puts the next bit from its history on its
cutput wire. Fach output port chacks if its enable signal is
1, and {f g0 it puts its other input at the end of its history.

Thus input ports consume thelr historles and culput ports
produce them. All actions of the gates happen in parallel.
Thur a now state is reached on which the (i+1)-3t cycla of
the conputation is started,

A VLSI conputation uses up copputational rescurces. We are
interested in area A, time T and switching energy E. Area A
is the araa of the smallest raectangle which encloses layout

A and T is the number of steps taken by the circuit to prod-
uce the desired outputs. Alternative definitions of areca and

tine and a definition of switching energy are discussed in
1.3.

Ko are now in a position to ocutline the argument for proving
lower bounds on the ATz complexity of VLSI chips. Let us con-
sider a4 chip computing soue Boolean function £ 3 B" - B". Let
R be a smallest enclosing rectangle, let a, b be the side
lengths of R, a € b, Then A = a*b 2 az. Let us assume further-
nmore that the chip hae n input ports and that a unigue input
bit is assigned to each port. Clearly, we can cut the chip in-
to Ltwo halves L and R by a line C parallel to the side of
length A of the chip, such that about half the input ports

lie on efther side of tha cut. Then C has length a $ VA and
hence at most (2v/M) WA clircult components can intersect C.
This can be seen as follows. Consider a strip of width 2)

with center C. If a circuit

{
|

- e -y
P
o

conponent intersects C then it has a square of arca at least

1?2 §n common with the strip. Since any point of the strip

bolongs to at moat v (regions associated with) circuit com-

ponents we conclude that hlz 2 a2 v vhere h 1is the

nunber of circult conponents intergecting C. Thus h s 2av/) .
We conclude further (and this i3 made precise in theorem 1
below) that at most h 3 2v/A VA Dits of information can
crogs C in any clock cycle.

Suppose now that we can show that w bits of informatican have
to cross cut C in order to allow successful computation of f.
(We will sec below how such a claim can be shown,) Then the
computation of f must take at least «/h clock cycles, {.e.
Tz w/h z uA/2wA or AT? @ (3/4vd) W2

This concludes the basic lower bound argumgnt., We will £111
in the details in the next section.

1.2 Communlication Complexizcty

The lower bound of the preceding section Is based on the cost
of comnunicaticn in VLSI computations. We will therefore study

communication complexity of Boolean functions in somewhat nore
detail in this section.

Let f: X xY » A xC be a function. We consider the follow-
ing scenario. There are two computing agents L and R. Initial-
ly, L knows x € X and R knows y € Y. Thay now want to coopera-
tively compute f(x,y) = {(a,c) by exchanging {nformation be-
tween each other., More precisely, L sends a bit depending on

X to R, R returns a bit depending on y and the bit just received,
..o until L knows a and R knows ¢.

Definition [Yao 791: A deterministic algorithm is given by
twvo response functions Ty, X x B* <« B and ro ¢t Yy xB® - B
and two partial output functions out, : X X B* - A N

outp : ¥ x B' + C, where B = {0,1}. A computation on input
X,y 13 a sequence w = LAV PEERL W of bits such that

1) LPITS .'L‘.'x.vl...u;.‘_] for 1 2 O

2% “2i42 " rn(y.vi....wzl’ll for £ * O

N Ix.w,....uk) 3 domloutL] and

t?lw|----v." L3 dm'uutﬂl

41 there 13 no shorter scquence with this property

« 1s the leagth of the computation w and is denoted k(x,y). An
aljorithn 15 correct i f(x,y) = (outy (x,w), out,(x,w)), where
w is the voogputation oa input x,y, for all x € X, vy € Y. The
oonplexity of an algorithm Alg is defined as

Clalg) = max(k(x,y);xtX,yeY)
Finally, tha conplexity of f is defined by
Cact"’ = nin{C{(Alg) ;:Alg computes ¢)

Ior the definitions above we assunad that the partition of the
inputs and outputs into left and right inpute and outputs 13
part of the problem gpecification. Thia assunption is quite
reasonable in applicaticns to distributed computing in genoral,
it ig, however, tee restrictive for VLSI computations. Note
that (n VLEI a pretlen is given as a Boolean function r:8"-8".
It 13 up to the chip designer to fix the locations on the chip
where certain (nputa are consumed and certaln outputs prceduced.
Wo thorefore define:

Definition: Let f : B" - p" and let @« ¢ O. Function f is
w-sgparable if for all balanced partitions X, Y of [1...n] ,
f.e. n/3 3 IX1, IYl 3 2n/3, and all partitions A,C of [1...m]

we have cdct") ¢ w, where H ux x 8Y - BA X B

X,Y,MANC X, Y,A,C
is defined by partitioning the input and outpat bits into left
and right input and output bits as given by partiticns X,Y and
th'

c

We can nowv formalize the first part of the lower bound arqgu-
ment. In the form given here, theorem 1 énerged over a seguence
of papers ([T 80, BK 81, v 80, S 81, Ls 81, X 82]).

Theorem 1: If f: B” « ™

ATz 2 (R2/16 rz) u2 for every chip camputing £,

is w-separable then

Proof: Let x = (F,A,8) be a chip computing f. Let w be
an input port and let R“ be its associated region in the
layout A. Lat the finput bit x; enter the chip through input
port m. With each such X, we associate a goint p, in the
interior of R such that different points are associated
with different input bits. For the purposes of the lower bound
preof we will consider the bit X; to enter the chip through

point Py- Similarly, we assocfate a point 94 with ecvery out-
put bit y,.

Let Q be a zmallest arca rectangle enclosing layout A. Then Q

has side lengths a,b. Assume & < b. We can cut Q into halves

L and R by a cut C parallel to the side of length a such that

exactly half of the p,'s lle to the left of cut C. Cut C gives
rize to a balanced partition X,Y of the input bits and a par-

tition A, C of the output bits in a natural way. Let £' - f
be the function induced by these partitions. Since f i3 -

saparable we conclude that C, , (£') 2 w.

X, Y,A,C

Since cut C has length at most a, at most h s (2r/A)VA regions
of A assoclated with components of T can intersect C. We will
now derive from the chip an algorithm Alg for f' with C(Alg):i2Th

Consider computation of f by y. At each cycle we associate two

values with C, a left and a right "crousing” value. The left

L r)

(right) crossing value v = lv:,...,v;) (vr = (v:.....vh)

contains a canponent v:(vf) for cach region R1 intersaecting C,

- {Q -

1f ®, is a {(nand,ncr,and,or) gate then v:(v:) i the (nand,nor,
and,or) of all Lnput values during the last cycle whose reqgions
interzect L(R) . If Ri is a wire then v:[vf) ic the above value

for 1ts input gate. Porte act as and-gates in this context.

Wilh these definitions the conputation of £ by y can be regarded
as a deterministic algorithn for conputing £' in the sense of
the definition above. The information exchanged between L and R
are the crossing values. Tho left crossing valucs are scent from
L. to R, and the right cressing values are sent from R to L. The
conputation is completed when both side have proeduced their out-
puts. Since a total of 2k bits are exchanged in every cycle the
algorithn described above has complexity 2Th.

Since 2Th * C(Alg) & Cgoy ($') = w we conclude AT® & (\2/16v%)a2.

o
We will next darive methods for proving lower bounds on the
cormunication conglexity of functions. We will discuss the crossing
soquence method for multiple cutput functjions and the rank method
for single output functions.

Mcthod 1 (Crossing Sequences for Multiple Output Functions):

Definition: Lat f: X x Y = B™ and let I, J be a partition of the
output bits of f. f has w-flow if there is partial input y€Y such
that f restricted to X x {y} in its domain and J in its range has
nore than 2”"‘ different points in its range.

Theorem 2: 1f f bas u-flow then cdet(t' 2 W

Proof: Assume that there is a deterministic algorithm ccaputing €
that has a communication length of legs than w. Then for two in-
puts (x|,y}. (xz.v) generating different cutput configurations in
J the sane communication sequence w is8 generated. Thus for some
eI tj(x1,y) & fjtxz,yl, but the algorithm computes fj(x‘,y} -
outk.j(y,v) - f](xz,yl. Here fj i3 the j-th bit of function { and

- §{ =

similarly for output function fn‘ Thus the algorithm does not
compute £ correctly, a contradiction. o

[vB0O) gives an example of a class of functions to which mothod 1
appllies.

Definition 2: Let t(x,.....xn.a1....sn) - (y,....,yn) be a

Boolean function. f computes a permutatfion group G on n elements

{f for all g¢G there i8 an assignment Qyoeensn toc the Syreece8y
such that f(x‘....,xn,ol....,a“) = (xq“ qln), for all

ne We call XqoooreX, the pernutation inputs

and s4,...,8, the control inputs. f is called trarszitive of

degree n {f G I8 a transitive group, Li.e., 1if for all {,3§=1,1,...,n
there is a g€C such that g(i) = j.

l...-,!
choices of XyssoasX

The most stralghtforvard example of a transitive function of
degree n 18 the cyclic shift function cs!x'....,xn.s1,...,an) ~
(y‘,...,yn) whare n = 2™ and the Brreere8y encode a number k,
Osk<n and Y1 ™ X(14X) mod n° C° Computes the transitive
group of cyclic permutations. Other exanples of transitive
functions of degree 9(n) are the multiplication of n-bit integers,
the multiplication of three Vnxvn matrices, the sorting of n
nunbers between 0 and n etc.

Theorem J: Let f: p''® . gt be transitive of degree n. Then £
is n/6-separable.

Proof: Let G ke the transitive group ccmputed by f. The
equivalance relation g(f) = h(i) for fixed but arbitrary £c(1,...,n)
divides G Into n equivalence claszes of size 1G!1/n. Let A be the
set of all permutation fnput bits and let B be the set of all out-
put bits, Let X, Y be any partition of A U B such that IXI|,I1YI24n/3.
For cach input bit {1 in X and output bit j in ¥ there are IG|/n
group elenents g€G such that g(i) = j. Let w.l.0.9. X be no

greater than Y assume that X contains at least as many input bits

- 12 -

as output bits. (The other cases can be arqued similarly.) Let
5 be the set of input bits in X and S' be the set of output bits
in Y. Then

ISI - ISl z n/3 + n/2 = n2/6
For cach of the pairs [1,]) € § x §' there are G/n group elenents
matching them. Since there are only a total of |Gl group elenents
there must be one clement 9, € G realizing at leagt n/6 matchings
Lotwean Inputs in S and cutputs in S'. The partial fnput y
tealizing the flow sets the control input bits in Y such that together
with appropriate assignments to the control input bits in X they
encode this clement 9o- The othar input bits in Y are assigned
arbitrarily. o

Theorea d: ([T 80, BK 81]) There is a constant ¢ > o such that
for every chip computing the cyclic shift of n inputs or multi~-

plying n bit binary nunbers a7l z cnz.

Proof: It vas shown above that the c¢yclic shift function is
transitive of deqree n. Thus the claim follows from theorems)
and 2. TIn order to extend the result to multiplication we only
have to notjice that nmultjiplication by a power of two isc a shift.
o
Theorem 4 15 guite significant because it states a lower bound
on ATz for two very impurtant functions: cyclic shift and multi-
plication. The A72 = Rlnz) lower bound i3 & yardstick acainst
which one can measure actual design. Thig will be done in chap-

ter 2.

we will now turn to the rank method for proving lower bounds on
the communication complexity of boolean predicates.

Mathod 2 (The Rark Lowver Bound for Boolean Predicates):

Lot p: X x ¥ ~ B be a predicate. With A = B and C = (1) we can

- 13 =

use the definitions above to define C, , (p). There are two
nethods for proving lower bounds on cdet(p]= the crossing
saequence nethod ard the rank nethod. The former method is older,
casicr to apply, and sinilar to the method used to prove theorem
2. Since the rank method 15 nore general we will describe it
here, The rank method wvas developed in (MM 82]).

Definition: Let r be a ring and let r(“'m’ be the sct of n x n
matricos over r. The rank of A € r(n,m) over r is the ninimun Kk
such that A can be wrlitten as A = C-L, vhere C € r("'k] and

D € rtk'm). We use N to denote the ring of integers.

If r is8 a field the above definition coincides with the definition
of matrix rank kncwn from linear algebra. Nethod 2 is based on
the following thecrem.

Theorem 5: Let p: X x ¥ - B be a boolean predicate, and let P
ba its associated matrix, L.e. P is an IX| by |Y! matrix with

ley - plx,y). Then

Cdet(p) ¢ log rank"(P) 2 log rankr(P)

wvhere r is any field.

Proof: The second inequality 18 known from algebra. For the
preof of the first inequality we state the following lemma,

Lemma 1 let r be a ring, A € ¢ ™™, g Mk oo (kM)
Then
rankr((h B)) s rankr(A) . rankr(B]

rankr((z)) s rankr(h) * rankr(C)

and B =-pD, - E

Proof: 1£ A=D, *E 2

1 1
then

2

E, O
(A B) = (D1 Dz) . (01 EZ).

The proof cf the second inequality 18 analogous. a

Now consider any daterministic algorithm for computing p.
Induct ively on the length of wB® we define the matrix P, as
ol lows:

Iwl = O: P, 3= P

Iwi > 0: If lwl = 28 then P (P ,) is obtained P, by
sclecting all rows x with rL(x,w) = 0 (r, [x,w)=1).

It (wl = 22 ¢ 1 then P“O(Pw1) is obtained from Pw by

selecting all columng y with rely.w) =0 lrnly.wl-n.

By Leoma 1 we have max(rankN(Pwo),rankN(Pw1)) 3 rankN(Pw)IZ.
Moreover, 1f outg(x,w) is defined then rank P, = | since P,
must consist of a set of rovws which are constant C and a set
of rows which are ceonstant 1. Thus there are x € X, y € Y
such that the computation of x, y has length at least

log rank:"(p}. o

We will next give two applications of theorem 5.

Thearam 6: Let X = Y and let p(x,y) =« (x=y) be the identity
predicate. Than Cdptip) = log IXI.

Procf: Clearly, P is the identity matrix and hence
rank o (P) = IX1.

The second exanple is less trivial and illustrates the fact that
randomization helps in distributed computing and in VLSI. In

Las Vegas computations computing agents L and R have fair coins
available to them. The response of an agent, say L, depends on
his argument, on the history of the computation and on the out-
conc of a toss of the coin. Correctness of an algorithm is de-
fincd as above, 1.¢. the output of the computation must be in-
dependent of the outcomes of the coin tosses. The complexity of
an algorithm on input X, y is the expected number of bits ex-
changed. A precise definition 18 alven bv:

-‘S-

Dafinition: A Las Vegas algorithm is given by two response
functions pyt X x 8" xB* -8B and po: ¥y x8* x8" -

and the partial ocutput function a: 8* - B. We assumc that both
L and R first toss t coina to dectermine the third arguments t
tn in the response functions, and then start a deterministic
conputation. The computation ends when ("1""'"k(x,y.t
¢ dom(a). Its result is a(w‘,:..,vk).

!l‘

)
bl tn)

The Las Vegas communication complexity of p ie

C,y(P/L<R) = nin I ki(x,y,t,,t)IZzt
LV t L’"R
A tL,tnEB
LV-alg

We consider the following example:

Definition let n€Nand X = Y = [0:27-117,
For x = (x‘,....xn) € X
and y = (y‘.....yn} €Y

Yok Py (x,y) = LI § 4 P for some i, 1s5isn
O otherwise
Theorem 7: a) Cuoplpy) 2 n2

) Ciy(py) = 0(n(log n))

2
2(n)

Proof: a} Since P, € B we only have to show

2
that rank 2 2™, unere GP(2) is the field of charac-

Gr(2) %
teristic 2. Let o denote addition modulo 2. We transform the

matrix P1 associated with ﬁl into the {dentity matrix of size
2 2
2‘") x Z(n) by mecans of linear transformatfons.

[m 28 I!et- w"ctojun‘y"...'rn ([o:zn-‘li DC‘iM

———

- 16 -

VICTRRTRPL s 20 B LIt SERRRE TR -TH ¢ TPRRRPE S0 2PRP
*3 Xn

X"U‘ xnsuh
.r)]‘:‘n ll'ula lﬂl.wn'Y"l . -.Yn, L id(W‘,...‘Un;yi....,yn).

Proof: Note that

q!u‘,.-.,wn,y‘,...,ynl = Hx|.....x“l:x1 LT ylll nod 2

= 2™ ity,w) 0 moa 2
i=1

LfE vy, = W for all 1 a

2

- 2(n)

Ne conclude from lemma 2 that rank and hence

ariy Ty
i o 3
Caor (Py) = Cgue(By) 2 1

b) The Las Vegas algorithm for p is based on the following
simple number-theorctlc fact.

'rclct= Lat P'.pz'...'pﬂ be the set of prm“ 5 n.
Lot © ¢ x, y = 27 = 1. If x ¢ y then
1{8; %X nod Py * Y nod pi)l : mf2

The algorithm looks as follows:

for i from 1 to n
do for k from 1 to log n
do L selects a prime pj fron the list of

prines p.,...,p, * # at random and sends
(pj,x* mod pj) to Rj;
R computes y; ncd pyg
1f Xy mod Py 'y, mod p’
then goto nexti fi

12

- 17 -

L sends x, to R;
if x; = y,; then halt and output 1;
nexti :

od

halt and cutput Q;

The algorithm above {8 clearly correct. Also note that if

X, " ¥y then L will send O{(lcq n)2 +# n) bits to R until
this fact is detocted. Observe that case X =¥y
once. If x ¢ Yy then O(k lo0g n) bits are sent from L to
R with probability 27X and an additional n bits are sent
vith probability 2-109 0 2 3/n. Thus an expected nunber of

o(& koz'k logn + '/n-n) = O(logn) bits are sent.
kel "

Hence va(p'l = O(n 109 n) o

occurs nost

Theorem 7 18 quite significant. For predicate P, randomization

provably reduces the amount of communication required by alpost

a square root. How about chip conmplexity? Note first, that it is

concelivable to incorporate random devices into VLSI chips. Such

a device might use statistical physical effects to produce (true?)

random sequences. Let us assume that ve can build a device which

uses area O(1}) and produces a random bit in tine O(1). A predi-

cate similar to p, can be used to show (¢f. [MM 82] for details).

Theorem 8 : There 18 a predicate p: 8" - B such that ar? : cn2
and (ATz)La’
C.

vegas * en3/2(1cqn) ? for some conmstant

3. EXTENSIONS AND RELATED RESULTS

In this section we will briefly mention some extensions and soae
related results.

3.0 Area

We defined the area A of a chip as the area of the =nallest
enclosing rectangle. Alternatively and more naturally we might
deline A as the area of the unlon of the reyions assoclated
with circult components. Let us call this area the active area.
In |tM B81] 1t 15 shown that all AT? lower bounds are valid with
area replaced by active area.

E The Manual and Lower Boundzs
on Area

The manual is a set of directions for the cormunication between
the chip and ita environment. Manuals as defined above were
terned strongly where-cblivious manuals in [IN B8], A more
restricted class of manuals are the when- and where-oblivious
manuals. In these manuals the location and the time at which

a bit enters the chip is independent of the input. We have

a) [V 80] A chip for [has area A = R(n) i1f the manual iz
vhere- and when-oblivious.

L) (LM B1] A chip for f has areca A = ﬂ(n’lg

i5 strongly where-oblivious.

} 1f the manual

)J.3 Period

The pericd P of a chip 18 the least dilstance in time between
distinct problem insgtances which can be fed into the chip.
Vuillenin [V 80] has shown that the AT? “2 lewer bound of
theorem 4 can be straightecned to Ap? Q{nzi. Bauydet [B 81)
has shown that AP « Q{n + n log n/T) for every chip realizing
binary addition.

-]9-
3.4 Energy

Switching energy E is another important computaticnal resource,
We assume that every unit of active chip area consumes one unit
of switching enerqy each time it chanqges its state from O to 1|
or vice versa.

This complexity ncasure {8 closely related to the encrqgy dissi-
pated when charging a wire. In technelogies without high d.c.
currents the switching éneryy dominates the total enerqy dissi-
pation on the chip. We have

Theoram 10 [IM 81]): Let f be a transitive function of degree n.
Let E be the worst case .switching energy consumed by any chip
couputing f. Let A be the (active] chip arca and let T be the
worst case computing time. Then

leg P

for appropriate constanta ¢,,c,,03 > O.

3.5 Propagatjion Delay and the
Notion of Time

We defined time T as the nunber of clock cycles apont ¢n the
computation. Note that this {8 not a "physical” measure of time,
since the length of a clock cycle may itself vary with the size
of the chip. Bowever, as long as the delay of signal propagation
along wires is not significantly longer than the delay of the
switching clements the nunber of clock cycles gives a qood ropre- .
sentation of the time spent, i.c., is asyntotically accurate.

- 20 -

As the size of Chips increases this ceases to be the case,

at least (f the driving capacity of transistors driving long
wircs is not increased appropriately. [CM 81 introduce a
physical time measure T by measuring time in seconds under the
assumption that signals are propagated along wires at a coanstant
speced. They qet dramatically different lower bounds on circuit
complexity. Not only their lower bounds are larger, as we ex-
pect, but the optimal chips according to their complexity
naagures differ significantly from the cptimal chips If T is
noasured in ¢lock cycles. This is, because [CM 81] pay a
venalty for long wires across which communication is expensive.
The tine measure of (M 31 may become technologically signifi-
cant eventually, as the spoed of light tecomes the limiting
factor in sigral propagation on VLSI chips. In the meantime,
however, other physical tice measures may be more appropriate,
such as the ore introduced in (MC 80| that is based on the
capacitive properties of VLSI structures. In this model the
switching tine of a tranaistor (s given by the ratio of the
capacity to be driven and the cize of the driving transistor.
No non-trivial lower bound resulls have been shown for Lhis
mo¥l as of today. However, in nany cases optimal designg for
the unit delay mcdel carry over tc the capacity model.

I1. EFFICIENT VLSI ALGORITHMS

—— W a -

In chapter [we derived lower bounds on the complexity of the
basic aritheetic functions., In particular,

APz - ﬂ(nz) , T P for binary multiplication,

AP =0 ¢#n logn/7T), Tz P for Linary addition.

In both cases there are designs whose performance matches the
lower bound,

- 3y =

Theorem 1: a) ([(Pv 81)) Por Yvn 2 T 2 (log n)z there is a chip
for binary multiplication with Arz - O(nzl. P=T

b) ([(BK 81)) For n 2 T 2 log n there iz a chip for
binary addition with AP « O(n ¢+ n log n/T).

We will not go into these constructions here. Rather we will

describe a fast T = O(log n) and area efficifent multiplier. More
precisely, wa describe

2

a) a chip with A = O(nz), T =0(logn), P=0{1), L.e. AP" = 01n2)

b) achipwith P « T = O0{(lcg n) and A = O(nzfloq n).

Previously, only designs with A = O(n2 log n), T = O(log n) and
P = 0(1) were known ([v 83], (B 82]).

Our design is based on tho following well-known identity due to
Karatsuba. Let a = a, n/2 , ay b - b1 M2E, b, be two n bit
integers; a0 8y, b‘, b2 are n/2 bit integers. Let h = (ai+a2)(b‘rb2

Then we have c=a-b=a b 2"+ (h-ab - ab)2% 4 ab.

Thus nultiplication of 2 n~Dit numbers can be reduced to 3 multi-
plications of n/2 bit numbers and a few additions.

Let T(n) be the delay of a network based on the identity described
above. We have

T(n) = T{n/2) + O(A(n))

where A(n) 13 the delay of the adder used. If one uses a fast
adder, e¢.g. a carry lookahead addar, then A(n) = O(leg n) and

hence T(n) = O((loy n)zj. A decign bagsed on thesze principles can
ba found in [L 81),

We add one more idea to Luk's design: a redundant nunber of
representation. Then Ai{n) = O(1) and hence T(n) = O(log n) {f

- 2% =

tle representation is chosen appropriately. Redundant repre-
sentations mare also used in (B 82, v 83).
n-i {

€ [=1,0,1) let nun(a _\,..00ay) = L 2,27

For :10,...,.1 0 t<o N

n-1
t.e, we reprosent nunbarg with digits <1, 0, ¢!, We vill next
show how to add two numbers in this resprezentation in time
o(1).

I;l‘t. “0‘.-.'ﬂn_1'b°'a..‘bn_‘ E {-‘lol‘} and
let a = nun(a_ o000l b - num{bn_|,....b0) and ¢ = a + b.

Note first that a, + bl € [(=2,-1,0,41,42},

\: .
Noext write a ¢ b1 as 2nl + e vhere ny and s, are given by

the following table:

nl*bi n, 8,

2 1 0
0 1 it a, , +Db,_, <0
1 -1 if a; 4 *+b,_,20

0o 0 o
-1 0 -1 ir Ayt 0
- ¢ it At by ,20

-2 -1 o

Finally, define ¢, = n,_, + 5, 0s i35 n.

Lemmar a) c, £{=1,0,41}

b) c=a+b =~ nun(cn Cpmy =-- co)

Proof: a) Note first that nl_', 8, c(=1,0,1). If al

then 8, = 0 and hence cy €{=-1,0,1}. So let us assuma that

+ bl . 4 1

a, ¢ bi = 41, the casec a, + bi = =1 being symaetric. If

3.9 ' b _4 <0 thenug_ , 5 O and 3; = 1. lience ¢4 €(0,1).

- 23 -

) § 3 31_1 + b1_1 z O then u1_1 f(o"] and ai = =1, Hence cl c{-] '0}.

In either case we have shown that -1 ¢ ci <1,

b) obvious (4]

We represent digits in (=1,0,+#1) by two bita. More precisely, we
use representation in 1-comploment, l.e. encoding (+1) = (0,1),
encoding (O] = (0,0), encoding (-1} = (1,0). Then it is easy to
desigyn an adder cell for n digit numbers with hefght O(1) and
width O(n)

b e b ao

n=-1'%n-1
1 q ? b

Add(n) l } 0(1) height
L1__ —

cn-‘ ® % & & % B eSS Y co

Using this adder cell we can build up a multiplier as shown in
the diagram balow. A conventional multiplier is used for small
n, say n s 8. Let H{(n) (W(n)) bae the vertical (horizontal) ex-
tension of that layout. Then

H(n) = O(n) + 3((n/21+ 1) and
W(n) = o(n) + u(lns2l+ 1)

also H(n) = W(n) = c¢cn for n s 8 and some appropriate
constant c.

We conclude K(n) = o(nl + 3M([(Tn/2) + 1)/21 + 1) which has
solution M(n) = O0(n). Thus W(n) = O(n) and hence
A(n) = H(n) + WN(n) = O(nz).

Theoren 2: The maultiplication network descrilbed above has area

A = 0(n®), delay T = O(log n) and period P = O(1). In particular,

APZ = 0ln2) which is optimal.

- 24 -

Sy S -
. L —
s ..t 34
. s -—-‘!w-v;. e

g |
i . E_-,_ -)
. e "._*",'"" -
oy —:,3
!) Ay

- ~ o —

Miln/2))

N(Mn/21+1) Min/20)

sub(2(Mn/21+1) l]

N -

- - - .

e <
-«

-

- -

lSubtzlfnn'lm

TR Y)]
.,ﬂﬂ

o"!:
V L

Add (2n)

TP |

A S ——— -

- 28 =

Proof: The circuit described above computes the product of
two n bit nunbers in redundant representation. It is easy to
sce how to use a T = 0(log n) adder to convert from redundant
representation to standard binary representation. This proves
T =0(log n) and A = O:nz). Finally, observe that the circuit
above is synchronous and hencc can be used in a pipelined
fashion. Thus P = 0(1). o

we finally describe how tc reduce the area. Let a, b be two
n bit numbers. Lot k = /Vlog n. Divide a, b into t = n/k pieccs
of length k each. Then

t t
a= t a2, b= 2 b, 2"
i=0 {=0

and each a ., b1 is a k bit binary number. Also

t t
cwmwa-+-bm=m [L alb12(1+j’k . Wo use a k bit multiplier to
1=0 j=0o

2 products albj‘ Since the multiplier can be pipe-

compute the t
lined this takes time O(log n + tzi = 0(log n). Also the tz
products can clearly be added in time O(tzb = 0O(log n) if re-

dundant number representation is used. We summarize in

Theorem 3: There is an A = O(nzlloq n), P=T = 0(log n)
multiplier for n bit binary nunbers.

III. THE HILL DESIGN SYSTEM

The HILL design systsm is Currently under development at the
University of Saarbrlcken., It is part of a larger VLSI project
which is sponsored by the DFG (Deutsche Forschungsgenainschaft).
A major other project is the CADIC system which is developed
under the direction of G. Hotz.

- 26 =

An cverviow over the HILL systen {8 given by the diagram below:

-~

\

"roprocessor

I PASCAL Program

Internal Kepresentation

£ N

Civeuit I'xtraction Compaction STIURS VYerilier

e]

(Mask Data)

Cirenit Schematic

L\

SEL Sinulation Ratio Checking

p_—— [e e

At present the HILL system has three major ports:

a) HILL layout specification language and graphics editor
(discussed in 3.1)

b) HILL Compacter (discussed in 3.2)

c) HILL Simulator ({(diacussed in 3.3)

- 27 -

3.1 HILL layout language and
graphicas editor

HILL 18 a tool for single chip development. The main focus of
HILL is layout generation and verification. HILL ains at sup-
porting the designer who has a comprehensive global image of
his circuit. HILL provides a convenient way of describing a
layout synbolically either by a HILL program or during an in-
teractive session at the graphics terminal. Even though the
layout is specified in a symbolic manner the designer has many
necans for exerting direct influence on the quality of the
resulting mask data.

HILL is a system which combines convenient clircuit description
with efficiency of the implenentation. We aim for ecfficiency
in three reepects: Human design time, chip arca and delay, and
conmputational resources.

Human Rescurces: In HILL, fintegrated circuits are described
at the level of stick diagrams enhanced by extengive means for
structuring a design hierarchically. We have chosen the level
of stick diagrams because on the one hand it still allows Lhe
degigner to express his insights about the topology of the
circuit and on the other hand, it frees the designer from the
tedious and error-prone task of specifying his circuit on the
mask level. The stick diagram level has been uced successfully
in systems like [CABBAGR], (STICKE)], and [MULGA]).

Even though it certainly (8 no good practise to specify a whole
large scale circuit with one great atick diagram, 1f enhanced

by extenslive meana for hierarchical structuring, ececpecially
vith a powerful cell concept, stick diagrams becone a Convenient
synbolic representation of cven large scale layouts.

In the HILL report (LM 83) this thesis is exenplified by a
nunber of exanples. We will give only a small example below.

- 28 -

tierarchical structuring exploits the regularity of a layout.
O course, there are always irregular parts of a layout and
therefore HILL also alluws graphical layout specification. The
qraphics editor is simflar to existing ones and is therefore
not dascussed here. Previous stick diagran systems used to be
tutally or almest totally graphics coriented. Hewaver, graphics
alone cannot support powerful mechanisms far atructuring lay-
vuls. Essentially, it can only support congpesition and simple
torns »f {teratien. However, it canrot supgort recursion, and
the tull power ©f fteration and parameter passina.

Recuraion and iteration are central to (software) algoritha
Jisiyn, and Lthey have alrcady proven to be powerful concepts
in hardware design |[GY 82, MC 80|. Only a high level program-
ning language provides the flexibility necded, and so NILL is
dezigned as a PASCAL extension, which intcracts gracefully
with a gqraphica editor.

A gqood example (s provided by the multiplier deaigned in the
previoug sectfion, The layout givan there is regqgular, howevaer,
the regularity can certainly not be captured in a pure graphics
ayalem. Rather, powerful descriptive tools, sach as rocursion,
fteration and paraneterized cells oare needed to capture the
regularity.

Chip area _and delay: Experionce with axisting systens [CAB-

DAGE, STICKS, MULGA, HILL B2 suggcats that automatic caonpaction
van yield small layouts which come very close to hand conpacted
layouts. The stick diagqram level is cluse enough to the sillcon
to allow the designer to incorporate paerformanca aspects into
his specification, and the compacter supports chip performance
with hisz knowledge of the fabrication process. Firally, the

cazc of circult description and the flexibility of the algo-
rithns used In the system allow the designer to try =zcveral
approaches to his clrcuit and gelect the one he 1likes best.

- 29 -

Computaticonal Rosources: Most existing systems have definite

chort-comings in this respect. In all cases no theoretical
analysis of the running time is given, often algorithmic con-
cepts enter the system only scantily. Computational experlence
with the systens suggests that the running time is highly non-
linear. For example, it 15 reported that CARBAGE takes time
O(n"zl to compact a circuit with n transistors and wires. In
the HILL prototype wo improved upon this; an O(n lcg n) con-
paction algorithm is described in (L 83). However, even such
an algorithm will not do for large scale circuits, mainly
because it also has an 0(vn) space requirenent, The solution
to this problem is to compact hierarchically, see [L 82b].

The compaction algorithms used in HILL are described in section
3.2,

The main structuring device in HILL ie that of a ‘cell”. A
cell is the specification of a subcircuit of the chip to be
designed. Thisz cubcircuit will in gerncral function as a modul
in the chip that communicates with its surrcundings through
relatively few connections (pins) and performs a specific sub-
function of the chip function. It 18 rectangular in shape with
tha connaction ping arranged on its boundary. It i3 very much
reminiscent of a function in a sequential programmaing language
like PASCAL. As prccedure parancters form the (up to side
effects exclusive) interface between the procedure and its
call envirorment, the pins of a cell facilitate the interface
botwean the cell and the circuitry around its location of
"placerant® on the chip. The only way to contact to a cell (s
through on of its pins. Like procedure cells can be conpliled
separately and defined externally. For "instantlating™ a cell
only a descripticn of its rectanqular boundary, its so-called
"tenplate” has to ke given. The template contains no (electri-

cal or topological) informaticon about any of the inner workings
of the cell. However, it contains both electrical and topologi-
cal informatica of the cell boundary. Pins can be related to
cach other electrically in the template and they have to be
“placed” in crder to specify the order in which they occur
around the cell boundary.

-30‘

in addition to specitying in which order the pins appear on
cach side of the cell HILL also requires to specify tha
relative positions of pina on opposite sides of a cell. This
is in marked contrast to other synbolic layoul syslems, w.q.
AL, and has the following advantage. A layout {even a sym-
bolic one) resiricts the relative poszitions of pins: e.q.,
in the symbolic layout for the multiplier given in the
previoua saction the output pins nust be to the right of the
input pina. In HILL these restrictions are part of Lhe tea-
prlate and hence can be taken into account by a designer when
he uses a cell.

We close this gsection with an oxample which highlighta many
of the features of the HILL layout language. For a complete
description the reader is referred to (LM 83].

No specifly the legical part of a decoder. The decoder takes

n inputs (horizentally) and 5 inputg at the top. It produces
2" outputs at the boittom all but one of which are zero. One
of the inputs, namely the one selected by the horizontal in-
nuts, 18 fed thrcuqgh.

For the deegign we need two leaf cells zero and one. Tho lay-

outs of these cells are given below:

rin
- S - $- ——
"' “ > 4- ..__T_’ re
'-‘ >4 —r'] — 'o“ l., [o LY ol ?' -® f-’
L LY] ! M one
f., P .L -.r.‘ oy o} c.} -.f-lll
ln; L o o - - - r al cl

el wld

- 31 -

(The horlizontal diffusion line carrica gnd; lines s and na
carry a4 signal and its comglement. Cell zero lets the signal
fod in at the top pass through iff the signal is zero. Other-
wise it grounds the signal.) Cells zero and ona are nost
naturally defined graphically and then entered into tha cell
library. They can then be included into a HILL program by

aggregate bus = record 631 poly; qi diff sig - gnd;
ns 1 poly end;

cell 2ero = tenp pins in, out : metal;

l,r : bus;

order implicit all:;

sides top in;
bottom out;
left 1;
right r;
Pt
external;

In these definitions we first introcduce a bus consisting of a
poly line followed by a diff line carrying the signal gnd
folloved by a poly line. In the cell definition of cell zero
wa first define the template. In the pin section we introduce
the nameg and the sorts of the 8 pins in, ocut, 1.s., l.9.,
l.ns, r.s8, r.g, r.ng of the cell, for {nstance, the pin in
has sort metal. We then specify the distribution of the pins
over the four sides of the cell and their relative position.
The phrase order inplicit all states that the ordering 1is
given by the sides scction, i.e. the tep pin on the left side
is aligned with the top pin of the right side, and go on,

- 32 =

An alternative to a graphical definiticn of cell zero would

D to specify the layout within HILL. We would then replace
heyword external by

layout
components pd: t(2,y);

hegin place pd en (in right croate 1, 1l.35):

route 1.8, to pd to r.s=;
route 1.9 to r.q;

route 1l.ns to r. nsj

route layer diff pd up create 1 left to in:

route pd down to 1.9.;
route in to outy

and

This progran asscenbles the layout of cell 2ero on a rectanqular
yrid, This qrid can crow dynanically by the use of create; Lt i=n

gqiven tnitially by the template (the solid grid lines in the
diagram below).

'

("]

*—
- E 2 T I - ‘— P - - -
— 4 —4
N . 3
== _.'_ = — ‘ = e
"i ! ’.’
™ i IS
i 1.~

In order to assenble the laycut we first declare the components
nceded, here a transistor pd of channel length 2 and width 4,

We place pd on a new vertical grid line one to the right of

in and the horizontal grid line given by l.s. Then we route

a nunber of wires. In most of these route statenents the layer
of the wire can be deduced from the sort of its toerminals. E.q.
the vire trom 1.8. to t must run in the poly layer, since l.s
and the gate of a transistor hoth exist only on tha poly layer,
In the next to last route statement we route a diffusion wire
from the top terminal of the transistor up to a new grid line
and then left to the vertical grid line determined by in. Since {t
hits the metal line running down from in to out thera an nd
contact is created autcmatically.

We will next describe how to build up the entire layocut for

the decoder from cells zero and one, Cells zero and one are to
be placed into a rectanqular array. For n = J we want to create
the following pattern

o C O
O C =
o = O
O = =
- O C
i O w

In HILL there are two nodes for specifying layouts., In conpo-
cition mode cne agsembles layouts from smaller cells by abut-
mont without explicit routing. Since HILL cells are stretchable
abutment (composition) is a method of construction which is
trequently used. In layout mode one assoembles the layout on a
rectangular grid. Components are placed on this grid by place
statements and wires are routed between them by route stata-
nants.

In composition mode the decoder is defined by
cell decode (n: int) =

tenp pins in, out: ggggxlo..zn-ll of matal;

l,r: arrayl[0..n=1] of bus;

- 34 -

order inplicit all;

sidos top in;

bottcm out;

lett 2;
right r;
pret;
coeposed

var 1,) : int; leaf 1 pcell;
begin decode := nil;

for 1 from O to 2"-1

do begin leaf 1= nil

for j from O to n-1do
begin 1f (1 div 27} nod 2 = O

thaen loaf := leat vy zero

else leaf := leaf yy one

ond

Gecode 1~ decode xx leaf

end

In this specification we build up the layout column by colunn.
In cach colunn we compute the column fron top to bottom. After
conputing the type of the next cell to be abutted we add it te
the partially constructed column by leaf := leaf yy zero or
lcat := leaf yy one respectively.

In layout mode we assemble the layout on a square grid. The
use of layout modo for the present oxample is less elegant

- 35 -

than the use of conposition mode; however, layout node is

a must in many cases, c.g. for leaf cells and the nultiplier
cell of chapter II. Even for the present example layout mode
has twQ advantages. Firstly, layout mode is a "graphical®
node and hence the system gives better error messages in lay-
out mode, secondly, layvut mode provides us with explicit
nam2s for pins of subcells which can be accessed by the simu-
lator. For the following example we use logical to denote the
common tenplate of cells zaro and one,

cell decode (n:int);
temp pins tin, bout : array (0..2%=1) of poly:
b, rb : array [0..n=1] of bus;
order implicit all;

sides top ting
bottem bout;

left 1b;

right 4+ H

Emt
layout var 4,) : int

xstretch 1 xlines)
ystretch : ylines;

components leaf : array [o..2n-l,0..n-ll of logical;

begin for 1§ 1= 0 to 2"-2 do

xatratch := tin(i] create 1;

for j i= O to n-2 do
ystretch := 1b[i] create 1;
xstretch := allx;

ystretch := ally;

for i :=0to 2™ do
for § := 0 to n-1 do
place leaf [i,3] on (xstretch[2ef, 2eis2],
ystretchl[4e), dej+ed)}
L€ (1 div 24¢3) mod 2 = O then
£i1l leaf (4i,j) with zero

clze (ill leaf [4,)] with one

end

Thig spccificationhas tobe interpreted as follows, We start
out with a yrid as given by the template (solid lines in dia-
gran)

.
i

e L L]

&-_ f.....‘ : ;'l) 2 ' v -1
I :_ e | ; f '
BRSNS SERAREE

- 3 1—-»4—-—-p ' ' T T

- - -'-n-i-J-J----'----‘— pq‘cunol
["]] '

+ —t 4 1 T T
| [] L
—r-r1 ; r—t=g-d
{-4_..1____; ; S - - | !-

' | \ 1

T ---:-q - - L.'- .}\ -‘-q-:o- At
< - ! ' N 1
S EENENERE RN

-] L] 1 = .- '.' []

T rrretrT T

' ' bt] M

_H : 3 :— 3 : ; ;] L—

In the components scction we declare an array leaf of rec-
tangles which all have templato logical. These rectangles
ore blaced on the grid and then filled with cells zero or

une as appropriate. In order to place the rectangles we first
create new grid lines (broken lines in the abcove figure), on
which we can place the pins of the leaf cell array.

- 37 -

This iz done with the create operator. Then we place the leat
cells on the grid. For each leaf cell we specify the vertical
and horizontal grid lines that the tenplate of the cell is
placed upon, Por this specification we use the notation
xstretch(i,j) where xstretch is a list of gridlines and
xstretch(1,j) is the sublist of xstretch consisting of the i-th
to j-th element. The variables allx and ally dencote the list

of all gridlines in the vertical resp. horizontal direction.

We cleae this section with a short rerark about computaticnal
experience with the HILL prototype system. It sugqests that

the systen works quite efficiently and that layouts with up

to 5000 components will be processed (this includes conpaction)
in less than 60 sec on a Siemens 7760. Since runnirg tine of
the system i35 O(n log n) as we will sece in the next section it

is safe to predict that layouts with 50 OO0 components will
take about 10 min,

J.2 Compaction in HILL

Exaecution of a HILL program yields (the hierarchical represen-
tation of) a stick diagram. The compaction prcgran takes this

stick diagram and squeezes it whilst observing the design rules
dictated by the fabricaticn process. This approach is taken by

all stick diagram based systens [CABBAGE, FLCSS, MULGA, SLIM,
STICKS, TRICKY].

Conpaction is done in a number of phases Pre PyoersPy- Puring
the odd numbered phases the extend of the layout in the x-
direction is reduced by applying a squeccze in hortzontal dizec-
tion to the layout., The y-coordinates of the layout components
are not changed in odd numbered phases. Analogously the even
numbered phases squeeze the layout in y-direction. At present,
tho HILL compactor treats phases independently. The reader

- I -

should consult [SLIM, GW B2] for attempts to relate compaction
in Xx= and y-directton.

Wwithin a phasc there are two approaches to compaction. We
concontrate on compacticn in x-direction in the soquel. In one
approach cempression ridges are run through the layout that
mark areas of the layout containing excess space. This space
iz then removed. This process is iterated until no more con-
proesion ridges are found. [MULGA, SLIM]. The second approach
is graph-theoretic in nature. It is taken in HILL and also

in [CABBAGE, FLOSS, STICKS, THICKY, GN 82].

We oassociate a real variable with every layocut ccmponent, |.e,
with overy wire, contact or transistor. The value of this
variable reprecsents the x-coordinate of this component. Linear
inequlities {(and equalities) between these variables are used
to express the constraints on the x-coordinatas of different
layout components., There are three types of constraints.

L - xJ 2 nij > Q.
Constraints of this form ensure miniun scparation require-

1) Minimum distance constraints, X
ments dictated by the fabrication process.

Fxample: Consider two parallel diffusion vires of width

w, and w

1 2° et Xl, x2 denote the x-coordinates of the conter

L

2 3

- m—— - w8

X

M o - o= o o= owm o weee

-

L

1ines of these wires. 7Then Xy Xy # 31+ (91 4 wz)/z in the
process described In [MC 80].

- 39 -

2] Alignment conatraints, 'atj s X, = x) s ’lj .
Constraints of this form cncode contact rules, i.e. they
solder layout components togother that should contact each

other.

Example: Consider a square contact of side length W and a
line of width w. If Xye X, are the x-ccordinates of the
centers of the contact and the wire respectively, then

-

Ix1 - le s (W - w/2 or

- (W =-w)/2 s X, = X, s W -w)/2

3} Maximun distance constraints Xy = “j 3 ajj

Maximum distance constraints encode requirements given by
the designer explicitly. For exanple, he might wish to keep
two components together because of wire delay considerations.

In HILL keecp-statements are used to intrcduce user-defined
constraints.

In section 3.2.1 below we discuss efficient metheds for cenar-
ating a sufficient smet of linear inequalities. Suppose now that
wa have a set of lincar inequalities describing the layout. We
then want to find valuos ii for variables X £ =20, ¥, soa
such that max il - min ii s minimal (sce alzo (L B2a)). This
problem 13 easgily formulated as a shortest path problem as
follows. Generate a graph with nodes x,, 1 =0, V, If
xj S x, ¢ ‘1] is a constraint (note that X3 2 x, ¢ a3 is
equivalent to X, % xj - aij and hence all constraints are of
this form) generate an edge a from x, to x
X, 5. S x, i 3
of cost a". Also augment the graph by an additicnal node s
and edges s - xy from s to *tn.i -0, 1, ..., of langth O.

- 40 -

Then zolve the single scurce least cost path preblen with source

on this graph. Let u(s,x) the cost of a least cost path fron

% to x. Then -‘ii = uis,xd, L =0, 1, 2, ... {8 an optimal solu-
tion, 1.0, a solution for which max El - nin il i{s ninimal.
Exampler . The layout shown nlght give rise to
1 the following sysaten of inequalities
K, |
|¥1 - le E 3 |
X ‘.\(3 - xz c 2

From this systen we obtain the following least cost path problen.

o

/‘:.\sz u(a.xtl - 2

o
5”":‘ 5 (8,%,] = =1
4
o w(8,%y) = O
|

Cloosing X, = -2, §2 =1, EJ <« 0 gives an optimal solution of

Liic above system of lnequalities. o

In gonoral, the correctness of this approach can be seen as

follows:

1.) Note first that i‘
from the observation that u(s,xJI < u(a.lli + alj whenover

= u(s,xi) is a solution. This follows

to x,, f.e. vhanever thare

there is an edge of cost 5 from Xy 3

{3 an incquality xj S ox, ¢ ’i)‘
2.) Suppose now that *i 15 a minimal solution, We pay assune
w.l.0.q9. that max Ri = Q. Let j be arbitrary and let p bhe a

minimal cost path from s to Xqe 82y a, a, Ay

» ——— W —— LY
P o

with 8 = vo, vk =:3. Then u(s,x,) = a1 [} a2 * ... ak.

]

- 41 -

Also Viel $ vy + ai" i a censtraint for 0O < L < h and
hence *j s 0‘ ta, ... a a(s,le. Finally, observe
uls.x‘) 2 0O for all i since there 18 an edge of cost 0 fron

s to x,. Thus max u(s,xi) s 0 = pax Rl and min ﬁi % nin uts.xx)

and hence max X, = nin X, % max 21 - min ﬁl.

In section 3.2.2 we discuas algorithma for solving least cost
shortest path preoblems. In section 3.2.3 we Driefly discuss
hierarchical congaction.

. P | Efrficient Constraint Gener -
ation

Recall that we discuss compaction in x-direction. Effjicient con-
straint generation is a major problem for most existing stick=-
diagran based systems in a Lwo~fold sense. First, constraint
generation has large running time, and second, it produces a
large nurber of constraints which in turn influences the con-
plexity of the shortest path algorithmng uged to solve the con-
straint systen. For example, CABBACE may produce as nany as
oln"sl constraints and typically produces about 0(n1'2}. Of

course, running time is at lcast that much.

Already in the HILL prototype we overcame this deficicncy and
used an O(n log n) algerithn for constraint generation. The
algorithm i3 based on a left to right plane sweep and used quite
complicated data structures. In the spring of 83, I, Cnop laftar
hearing the lectures at Louvain), R. Reischuk and Th, Lengauver

independently suggested to use a top down plane sweep instead.
The following presentation follows [L 83},

- 43 =

Note first that alignnent constraints are easily gencrated
tn time O(n). Also maximum distance constraints are user
diefined and therefore are of no concern here. This lecaves
rinimum distanca constraints (type 1),

THE INTERVAL GRAPH

A stralghtforwdrd way to gencrate the Type 11 constraints
would be toa loek at cach pair of layout components in turnm
and use the dJesigm rule tadble to gencrate the appropriate
incquality., However, this would result in a{nz) inequalities,
far tco many to be practical,

In fact, many of these incqualities arée reduncant. Hostly,
mininun distances are small (a few microns) such that layout
conupononts that are far apart from each other will be assured
sufficient separation by the constraint that already exist

in each of thefr neighdourhoods. Therefore only a few of the
constraints 2re actually necessary. Ve will discuss how to
qenerate such "nininal® constraint systems. To this end we
fornulate the following graph-theoretic prodlen,

Cefinition 1: a) Let L be & set of n vertical intervals in
the plane, Each interval is a triple (x.yt.yh) where x 5§
the x-coordinate and y, and y, are the y-coordinates of the
low and high endpoints of the interval.

b) Let (L,<) be the total ordering that arders L w,r.t. the
x-coordinate of each intorval. Ties are brokea arbilrarily
but Fixed.

¢) Intervals 1, and 1, are said to “overlap®, if

Iyaly e Lycly Ay 1<¥n,2 A ¥, 2,1

-‘]-

d) The following set is called the set of intervals “"between”
[y and Iy:

ﬁ(ll.lzl N {1€L; ll‘(I(lz Ila I A lz)-

L represents the layout geometry. Specifically, cach interval
represents a layout component. For a layout to be correct
w.r.t., 8 set of design rules we 3ssume that overlapping inter-
vals have to be separated by certafn ninimun distarces in the
x-direction. The 2xact anounts are of na concern hare. MNon-
overlapping intervals are assumed to de sufficiently separa-
ted in the y-direction, such that no constraint in the x-
direction has to be generated. This can always be ensured by
slightly enlarqing the interval.,

Ne will define several ways for L to induce ¢ so-called con-
straint graph G={L,). G s a directed acyclic graph with
each cdge e’([l'lt} representing an inequality of the forn
:2-x12021>0. Here x, and x, are the x-coordinates of [, and

‘2 in the compacted layocut. The constraint graph G 1s al-

most exactly the graph analyzed in (LB2Z). The redundéncy of
sone constraints can now be fornulated as the follouwing axiom.

PROCESS AXIO0M: [f G=(L,E) represents an inequality systen
that ensures all design rules to be met -we call such a sys-
terr "adnfissible™- then the transitive reduction p of G also

represents such a systenm,

The process a»fom allows us to meqglect o1l incqualities that
form “"shorl-culs® in the constraint graph. This 15 3 realis-
tic assumplion because design rules are typically of 3 highly
10ca) nature. The process axion is a powerful and also essen-
tially the only existing tool for reducing the size of the
set of constraints for compaction.

Clearly there arc nany ways of extracting a comstraint greph
frem layout L. Here is the sinmplest one.

Definition 2: Let Goccotth(L.io} be defined as follows:

—— e —

m

- B =

Clearly the undirccted graph waderlylng GU 1s an interval
graph 1630), and its interval representation 1S given by L,
1 211 x-coordinates are cet to zero. Thus the question, how
to campute the transitive reduction oy of G, asks for algo-
rithng to efficicently conpute the transitive reduction of
much interval degs., Obvicusly the following s trye:
Fact 12 [1.05)€00 <o> Iy aDy A 0(1y,05)=0
Using this characterization Py can be computed in tine
O(n log n} with the following algorithn ﬁeno. Geno uses 3
top-doun plane sweep, Thus the algorithm scans 3 horizontal
sveep lime across the layout L from top to bottom. Ouring
the swoop 3 data structure D is maintained that stores infor-
nation adout all intervals that currently intersect the sweep-
lime, U s 3 leaf-chained dalanced tree th2t keeps the 1nter-
vals in sorted order according ta [L,<). Furtherncre with
cach interval 140D tuo pointers to otker intervals in L are
associated. The pointer left{l) points to nil or an interval
less than [, The poiater right(l) points to nil or an inter-
val qgreater than I, Both pointers reprosent edges between |
and the intervd) pointed to that are candidates for 29 hut
whose nenbership in "o has rot heen decided yet., N.1.0.9, we
ass5umec that the y-coordinates far all JcL are pabrwise dis-
tinct, Then dJuring the sweep ve encountor two tinds of cvents
the algorithe has to deal with, namely the insertion of an
interval into the sweep line and the delelion of an inter-
¥al “van the sweep line. Upon those the algorithn does the
following:
lasert{l) : Insert] into D;

Find the left and right neighbeur I; and l of

I in D,
left(l):- ‘: riqht(I}:elr

Teft(! }:-right(lt]:-
Delete(l) : if 1eft(1) # nil and left(1)cD then
“Tappend (Neft(1),T) to s

if right(1l) # nil and right(1]cD then
“append (1,right(T)) to ny:

delete] from D;

Theorem 1: a) Geno computes o4 In time O(n log n)

0 if n=1
)]pol s91 if n=2
in-4 if n>2

The upper bound of Theoren 1b is tight, as the following lay-

out shows: I
|

n-2 intervals

Several systersattenpt to find °o {CABBAGE ,SLIM]. CABEAGE

ray produce as many as D[nl‘s) constraintsand typically pro-
duces about O(nl’z). SLIN comes c¢loser, but it also produces
nore than the transitive closure, since 2 constraint is gene-
rated between cach pair of intervals that are visible from
cach other at lcast in part,

THE LAYER APPRIACH

Ahile py 95 always an admissible constraint system for conm-
paction 1t 15 1n gonmeral not the best one. [t does not allow
to chanqge the layout taoplogy during compaction, because there
is a constraint betwveen an interval and all of its nefghbours.,
[CABBAGE] states this problenm without offexring a solution,
Within our franewort we are able 1o qgenerate different adnis-
sible constraint systems that entail maore tonolegical freedom,

TOo this end we define a synmetric and reflexive binary conpa-
tibility relation ncL»L. Me call tuo intervals ll and I, com-
patible if II'E2. Intuitively tuo inteorvals should be compa-
tivle 3f the associated compenents do not have Lo meel any
nininun distance constraint. Obviously no edge has to exist
in the censtraint graph between any pair of conpatible inter-
vals, Thorefore wo define:

- 45 -

Nefiniting 3: Lat G =G {L)s(L.€) be defined as foldows:

(T)e1pd7 8y z<o> 1) A 15 A -Uyelp

e nmake the rcasonable assurption that 1t cam be decided in
ttag O(1) if ll.l?. Dne possibility to define v §s to realize
that Y{5] cCircuits are typically laid out on several, say &
lavers tnat are insulated from ecach other, except for contact
hales that provide connoctions hotwoem the layers. Therefore
we ¢Idn define: l:vlz if the layout coenponentls associated with
1y and 1, exist on different layers that are insulated from
cach othar. The resulting graph G 45 in gencral no interval
429 and 1ty transitive reduction n, may be hard Lo compute,
fut wxe can efficiently compute 2 supergraph cf n'uith fow
cdges,

Theoren 2: Lot L b2 3 layout such that o subset M(]) of 2

set (1, ..,8) of layers s dssocialed with cach interval l€L.
(He say that [exists on the layers in H(I1).) Assume that
(g1l ¢ for all IeL. Let [yl W10 H(I)0N(E5)=R. Then we
can in tine C0(dn log n) compute a graph R such that

ry R G and [R[Z2dn-4.

[(FLOSS Japplics this kind of layer separation to achieve sume
topological freedon during conpaction.

SHITCHING THE POSITIONS OF CONPONERTS WITHIN A LAYLR

While o provides for more topological flexitility by handling
cach layer of the circuit separately there are stLil) desir-
able trancformitions that it does not allov. ¥e give two
examples:

Exanple 1: Jeg-flipping of wires:

L

before After Interval representation

N

i Y -

Here the intervals overlap, although siightly, Sirce they are
on the sewe layer they are Inconpatidle with respect to the
above relation v an¢ camnot exchange their pcsitions during
compaction. CAUBAGE solves this problem by adjusting, speci-
fically for such jog flips, the lenqgths of the imtervals tenm-
porarily such that they do not overlap. This solution 15 ad-
hoc, however, and it does not solve the folliowing problen.

Exanple 2: Transistor flipping:

i ¢ 9 9 -
3 E: b I 1
SR 9,1—_—(2 P
¥ o — f L
Before After Interval representation

Here the vertical bold wire is on a top layer 2ad all other
Structures arc on the dottom layer. The contact ¢ conmects
between the two layers., In this ca2sc 3 simple ninded adjust-
nent of intérval lengths will not do. Therefore we extend »
by also allewing [1, if 1, and 1, exist on the same layer
and <arry the sanc electrical) sigral. Such an extension I
desirable, since the above eazauple Lransforeations will re-

duce the ares of many layoutls significantly, Bul now o, Can
becone large:

L] 1]

ll l2 . . . lﬂ J] Jz . . - J

Let Tyn 14 and Jyn J; for 1sicy<m, but ~l J; for 1<i,)ns.
Then o_ 15 the cosplete dipartite graph T_ .

Indeced one can show that 1f one just 25Suses v to be reflexive
and syanetric one cannot hope to find an cacoding for the

P3th information contained in G, that has size o(nz). Thus

G, 15 not the apdropriate constraint graps. We therefore de-
fine 2 new constraint graph Gl such that 50 2 5: > G, and Gl

= 8B =

2llows the tramsformations discussed above.
Refinitiun 4: let Gl-G‘(L}:{L.El] be dofined as follows:

Thus El can bSe abtainec fron Eq by deleting all edges in Py
that connect compatible intervals. This allows only exchanges
of the positions of neighboring cleaents during compaction,
Huwewer, both examnple transformations are included, The trams-

Itiwe rocduction " of Gl can e characterized as follows:

Lesoa 1 |:l,:z]fpl Cad llm 1? OO | s[l:.lzyzn => -!lﬂ 12)

aCally, 0,080 o0 vlea{ly 1,0 (1 0 A 1yv T) v
(L)% A1 v 151)
Lenrs | provides the basies for an efficient algorithm for
conputing o - The faliowing lemma shows that infcrmation has
to be upcated orly locally during the algorithn.

Leomey 2: Consider an arbitrary position of 3 horizontal line
througt the laycut L that does not touch the endpofints of

any intorval in L. Let 1.t be the subqraph that is induced
»
from py by a1l intervals intersectiag the line,

3} 1¥ [ll.lz)ral then there are at most two imtervals 1,1°
»
intoersn¢ting the line cuch that llilﬂl'flz.

h) The neximun in- and out-deqree of any vertec in Oy g 18 2.

There are oxanples that show that we cannot hope to find 2

tieple one-pass algorithn for computing ry using plane sweep
nethods, Thys the following algorithn ien, conputing o) 13 a
Ltwo-pass algorithn, Here i1s a description cf algorithn Geng.

Fass 1: Run algorithn Geng on L. Howcver, output anly edqges
(11-13]‘"0 such that 1;nl,. Organize the edges 1n 3 liacar
list T of sets, each set being the collection of edges output
during one delete operation,

Pass 2: Make 3 plane sueep bottem-up. Agair myintain 3 bal-

anced tree D, however this time allow for two pointers to
the left and two pointers to the right of each interval.to

- 49 -

to store candidate edges. Furthermore allow for cne oa-puinter
0o the left and right to store edges fren L.

Insert(l) : Insert 1 into 0;
fetch from the back of ¥ all ednes that have been
output upon the delotion of [in Pyss 1, and
stora tham 1a the oo-pointers. Maintain the set
of condidate edges between the intervals at most
J to the rigat or left of [in D according to
Lenma |, V.e., celete 3 candidate edge if the
newly fetched ecdges fron [show by Lemna 1 that
the edge s not a candidate any nore;

Delete(!) : ODutput all candidate cdges that have | as an ond-
point and an interval crossing the sweep line as
the other;

Delete [from D}

Theoren 3: a) GcnI produces o, 'n time 0(n 109 n)

b) Iall £ 4dn

The following exanple shows that there are layouts such that
|pl|ﬂln-16

T -
fxample 5: [[

...,'I \
.L4L a-4 intervals |

The storage requirenent of both algorithas Gen, and Gcnl is
Of{m) where m 15 the maxinum nunber of intervals intersecting
the sweep line at any tima, Since layouls can be expected to
de roughly quadratic with uniforn distribution of the layout
components we can expect m=0{/n). Here wo assune that the
output of Pass | in 3lgorithm Gcnl is on 3 scquential access
storage device and not in mafin menory. (Otherwise the storage
requirencnt would 2e l1inear.) Both algorithms are sinple
enough to expect that they perforn well in practice.

fcditional passes can be made across the laysut to generate

- 50 -

the transitive reductions 24 of constraint graphs Gis(t.[i)

_")I.‘-"[\

“l-’y)‘fi <z l,\ 'z A (=lynl, v wenly 0,
(ll.l)-(E.IZ)CE)_l)
Then SO > G! o 62 D... Ater at most n iterations the
senuance stati1lizes 'n a graph Gn with the fol'louwing proper-

tiae:

[- - T
Clpadd By <=3 Td Iy A (1,15)06

: 3 _—
T h, 15 the transative closure of Gt. Thus Prfg . Un-
fortunately the pacses to compute Py beceme increasingly

conplex such that this i3 not 3 good way to compute p_,

T [P P fftLciaont Constraint ResoOo-~-

lution

Constraint resolution is tantamgunt Lo solving a single source
least cost path problen. Ieast cost path problens have recelived
a lot of attention in the literature and are fairly well under-
astood., A detailed discussion can bae found in [M 81).

let G = (V,E) be a directed graph, s € V a special node and
let ¢: £ - R be a cost function. Let n = |v] and let @ = |E].
In constraint graphs w@ havea @ = O(n) + n whaere n 135 the
nunbor of usaer-defined constraints., Of course, m is vary snall
in goneral, .. n << n,

Lot ug consider a speclial case flrst: There are no maxinum
distance constraints and all alignment constraints are of the
form Xy = Xso Then constraint graph G is acyclic ard hence the
least cost path problem can be zolved in tine O(e) by topolog-

-] =

ical sorting. This algorithn i8 well-known and is used in
(CABBAGE] .

Lot us now return te the general cCasze. The best algorithm known
for the general case s due to Bellman/Ford and runs in time
OCnGII-O(nzl in our case). Najve use of this algorithm is out
of the question becauso of the large sizo of constraint graphs.
we use (or intend to use] three modifications;:

1.) The constraint graph is preprocessed and its strongly
connected comporents (SCCs) are conputed, This takes time
O(¢) by depth firat scarch. A description of these alge-
tithms can be found in most textbocks on algorithms. Then
the least cost path problem 135 solved by the Bellman/Ford
algorithm on the strongly connected components and the
fast algorithm for the acyclic case batween components.
If SCC3s are cmall this modification reduces running time
considerably. More precisely, the running time is

O{e + L “i“il where ng(e,;) 1s the nunber of nodes (edges)
i

in the i-th SCC, L = 0, 1, 2, This algorithm {3
inplemented in the HILL prototype and works guite well.

2.) In the absence of maximum distance constraints the SCCs
are of a very special form. SCCs arise from alignment
constraints between layout components which are connected
vertically.

- (:»7
®
()
()
|nyéut constraint graph

3.

- 52 -

Vor grophs of this special forn the least cost path problaon
can be golved in lincar tine. Suppose that the nodes are
nunbrred Vie Y30 Vyi eesp V. from top to bottom and that
l: i vhich
dors not pass through any other nade of the SCC shown above.
valoes dlstlvll arae already conputed vwhen the ma<iified algo-

rithn reaches the SCC under consideration.

dast!v is the lcast cost of a path from 5§ to v

thon

for L fron 2 to k

do distlv,) « mintdistiv;], distlv,_,) ¢ 4y, 4} 9di
for & from k=1 %0 1
do dist|v,] « min(dist|[v,], diatlv,] + A4q,4) 0d

updates the dist-values correctly under consideration of the
ocdges of the SCC. We thus have: In the absence of maxinun
distance rules congtraint rosolution takes linear time O{e).

In [Sch 83] thia apprecach ias oxtonded to a larger class of
yrapha, i1.e. nore general {but of course not completely
goeneral}l SCCs are considered and linecar running tinme is

naintained.

[n the presence of maximun distance constraints the work of

IM Sch] micht be of some help. Thoy show that least cost

path prseoblens on planar graphs can he solved in tine 0|n3f2knlﬂ
instead of time O(an as for the Bellmun/FPord algcrithmn.
Constraint graphe as generated in the previous sectiom are
almost planar and hence this algorithie migyht be applicable,

- €Y =
3.3.3 Hierarchical Compaction

In HILL layouts are defined hierarchically. However, no use of
the hierarchy is nade in the compaction process. Although we
presented efficient nethods for constraint gencration and con=-
straint resolution in the previous sections, the approach might
run into difficulties as chips becone more complex. In particular
the space requirenent might become prohibitive. It is therefore
worth-while to conecider hierarchical comgaction. The idecas
presented about hierarchical compacticn are preliminary.

Suppose, that wa enclose every cell into a polygon with heri-
zontal and vertical cdges. We night take as

.)

:] layout structure

—— .

this polygon the boundary of the layocut structure in the interior
of the cell or a snoothing of this polygon (see below). For com=-
paction in x-direction we associate a variable with every verti-
cal edge of the boundary polygon. We can now set up a set of
inequalities relating the boundary and the interior of the cell.

For every occurrence of the cell as a subcell in a larger cell
we conceptually replace the cell by its boundary pelygon. Mathe-
matically, we introduce a new copy of the boundary variables and
use this copy of the boundary variables vhen we set up tho in-
equality system for the larger cell. In general, if there are

L ocomrraoncea of a8 cell then there are k+i occurrences of the
bhoundary variables. One copy ks used “"within” the cell and one
capy s used for each occurrence of the cell.

A5 betore we can interpret the inequality systen as a least
cost path problen. The difference is that we deal with a hier-
archically specified graph. In (L 82b] it was shown how to
sulve such systens by dynamic programming. More precisely, one
proceeds as follows:

1. Phasa One is a Bottom-up Phase.
Starting at the leaf cells one solves all pair shortest
path problems, When a cell 15 looked at all subcells have
bLeen considered already. The subcells are replaced by con-
plete graphs on the (copies of the)l boundary variables of
the subcells. The cost of an edge of the completae graph is
given by the golution for the subcell.

At the end of phase cne an cptimal solution tc the constraint
system has been found, more precisely, the spread [(ex-
tension of the layout in x-direction) has been found.

2. Phase Two ls a Top-down phase and actudlly determines the
soluticn as fcllows: In phase one wo determined the solution
tor the root cell, This fixes the values of the boundary
variables for every occurrence of a direct subcell of the
root, call such a fixing an instance ¢f the subcell. In
general, there will be more than one lnstance but less than
the number of coccurrences. For every instance we add the
values of the boundary variables as additional constraints
to the constraint set of tha cell and then solve the least
coct path problem again. This fixes the values of the
boundary variables for every occurrence Oof a direct subcell
of a direct subcell of the zoot, ...

" 3

S, N

The running time of the algorithm outlined above s ¢ Ny
i=1

- 56 -

where n, i3 the nunber of layout Compornents in the i(~-th cell
and 3, is the number ot different ways cell 1 iz coapacted.
0f course, 8 might be very large.

One way of partially controlling 8; 18 o give the enclosing
polygon a spall nunber of edges. An extreme case is to make
the enclosing polygon a rectangle, This choice guarantees a
=rall number of boundary variables (2 + the number of pins at

top and bottom) but might yjield pcor cocmpaction results,

A compromise i3 Lo &moolh the snallest enclosing rectangle a
little but not all the vay to a rectangle. For example, we
night require that each edge of the polygon has length at

least m units or that there are at most m edges. In the former
carcn, [No 83) chows how to compute an optimal (= minimal wasted
area) approxiration in time O(nn).

3.4 HILLSIM, a Switch=-Level
Simulator

Simulation at the gate level, L.e. loqic simulation, has al-
ways been very popular with circuit designers. Unfortunatoly,
it 1s insufficient for MOS integrated circuits bacause anmong
others it cannot model rationed logic, dynamic menrory, charge
sharing and bidirectional wires, It scems that switch level
sinulation plays the role of logic simulation for MOS inte-
grated circuits. A first and very successful switch level
simulator, called NOSSIM, was developed by Bryant [B 80]., In
later papers [B 31a, B 81b] he gives a theoretical under-
pinning for the simulator, i.e. he intrcduces a mathematical
model for the behavior of MOS circuits and proves the correct-
negs of the sinulator with respect to the model. Unfortunately,
the nodel is quite complicated and at some points inconsistent.
Therefore, in [MNN 82] an alternative model is proposed. The
model io quite different from Bryant's original model and is

- 56 -

considerably simpler. An equivalent madel has recently beon
propoacd indepondently by Bryant [B 83], HILLSIN is correct
with respect to that nodel and also very efficiont. The sirplic-
Lty of the model suqggests scvaeral optimizations which could

not have beon obtatined froa Bryant's orlginal medel.

#e model transistors as voltage controlled switches. An open
ewitch has conductance O, a closed switch has conductance v.
ltera vy in an elenent of a finite zet [= l1.|<'r2< ...<1n} of
pesaible coaductarces. We use three different types of tran-
sistors n, p and d. The conductances In T are used to nodel
ratiord logic, We use strength (t) to denote the conductance
of t in its closed state

1
41
P Y
4 Ya '
(o ok
ok

"

Cm '—f " T "
o

o
inverter fin NS inverter in CMOS

Nodes {(wiges) are nodeled as capacitances, Each node has o
capacitance in a finite set K = (K"-'lf...ﬂ(q“] of capacitances,
Input nodes have capacity =. The capacitances are used to model
precharging and dynanic neawry. Ke use capi(k) to denote the
capacitance of no<de Kk

1, W, - L
rds -
. .

O,m
mepory cell in NMCS

= €% =

The state zk of a natwerk (s a function zk: N -~ {0,1,X) where N
is the set of nodes. If zk(k) = X then the state of node X is
cither unknown (i.e. O or 1 but unknown) or undefined (i.e. sonc-
vhére between O and 1). The state of a transistor 18 daefined by

the state of the gate and the type of the transistor according
to the following table.

state of gate n P d
0 open closed closed
1 closed cocn closed
X X X closed

We can now define the basic simulation algorithm. For the
sequel we use N to denote the set of nodes and T to denote the
set of transistors of the network. A node state is a mapping

zk: N = {0,1,X) and a transistor state is a mapping 2¢t:1 T -)
open, clesed, X).

Basic Simulation Algorithm

Input: a node state zk and stimull inr I - {0,1,X} where 1 is a
subset of the set N of nodes (the input nodes)

Cutput: a new stable state settle (2k,in) of the network, if it
exists.

in({k) 1f k € I

Let 2k (k) =
o zk (k) if kK CN-1I

1 « 0;
repeat: let zt: T - {open,closed,X] be as defined

by node state zk; and the table above, {.e.
2t{t) = &(rypeit),zkx(gate(t))

- 5 =

vhere type (L) ¢ (n,p,d), gate(t] € N 15 the
gate node of transistor t and 8 15 given by
the table abowve;

zk1+1 - Equ(zki,zt) , where function

kqu(Equilibriun) 15 defined below;-

1« 1M
until zk, = zk; 4 1

output zk‘ :

[t iz important to observe at this point that the basic simula-
tion algorithm implenents a unit-delay assumpticn. Note that we
first compute the transistor =tate as given by the node state,

and then keep this state fixed in crder ta conpute the equilibriun
state on the nodes, Once the equilibrium ic reached, we set the
tranaiators to their new states, We will come back to the
unit-delay assurmption at the end of this section.

It remains to define the equilibrium function. We do so In a
two step process. We firet define Equ(zk,zt) in the case that
zt(t) € (open,closed) for all t € T and then extend it to arbi-
trary transistor states.

A transistor state 2zt is complete 1t 2t(t) € {¢pen,closed} for
all transistors t € T. Assume nov that 2t is camplete. If 2t i3
complete we define an undirected graph G = (N,E) as follows. The
set of vertices is the set of nodes of the network, edges corre-
spond Lo closed transistlors; more precisely

E = [tv,w): v, EX and there i t €T with 2z(t) =« clcsed
and (v,w) = {(drain(t), source(t)}}

let V1,VZ,...,vh be the connected conpcnentsof this graph.

- 59

A connected component vy is isolated if vl = #, L.e. LI it

containg no input node, For the definition of Equ ve will now
nake a casc distinction.

Isolated components: Let V, be an fsolated component. Let

naxcap[Vl) = max {cap (k]:kfvi) and let

Equizk,zt) (k] = V{zk(v); vev1 and capl(v) = maxcap(vl)} for
all k € v1 vhere OvO = Q, Tvl = 1 and OvX = XvO = Ovl =

1Ivl = 1vX = X.

This definition captures the following intuition. In isolated
components the nodes of maximal capacitance determine the
cquilibrium state. If all nodes of maximal capacitance carry
the same logic value then this signal floods the entire
conponents and X floods the component otherwisze.

Exarple: Consider the NHOS memory cell shown above. Assume
precharge = read = O, write = 1, Then the bus of capacitance
ko 18 connected with the memory cell of capacitance k,; and
these nodes form an isolated component., Hence the value on
the bus is written into the cell.

Mon-lsolated ccoponents

let V, be a non-isolated component. Then every node k € Vl is
connected to at least one input ncde by a sequence of cloced
transistors. The logic values carried from the input nodes
along these paths will determine the equilibrium logic value
of the ncde. We defaine:

A path p i3 a sequence VooV 01v2 vos ek_‘vk

edges such that ¢, connects v, and Vigre The strength of a

of ncdes and

path p is the ninimal strength of any edge (= transistor) on

- 60 =
the path, {.@,
strength(p) = min{strength(e): e is an edge of p).

The styenglth of an cipty path is defined as =, The strength of
a node 15 the maxinal strength of any path connecting it to an
input node, i.e.

styength(v) =~ max{strength(p) i p is a path from a
node in I to v},
Note that this definition gives input ncdes strength «,

Exarple: Consfder an inverter with a pass transistor at the
output. There are two paths from input nodes tov,

d,»
A
- v namely L-“ v and ‘v
Al ™ h ‘ ¥y

0 v

both of strength v, Hence v has atrength v,. o

A path p - VorCorVyree 1€ 10V fron an input node Vy to a
nede v, i3 essential (for v,) iff strength(v,) = nin{strength(e)),

...,strcngth(el_i}) for 1 < 4 ¢ k, 1.9. if every initlal segment
of p supports the strength of ite end node, In our example only
the second path (8 essential, because the output node of the
inverter has strength Yoo

The equilibrium logic value of a node is determined by the

casential paths ending in that node, i.ec. for all v € VL

Equizk,2t)(v) = V(zkik); k ¢ T and there is an
esscntial path from k to v)

- 61 =

In our example the equilibrium logic value of node v is O.
Note that it is crucial that only essential paths are con-
sidered in the definition of the equilibrium value.

The definition of equilibrium logic value given abocve is
justified by the followving

Theorem: Let 1 € N be a cet of input nodes, let zk be a
node state and let zt be a conplete transistor state, Assune
also that zk(i) € (Q,1) for L € I. For c € N construct the
following RC-network:

Replace closed transistore of conductance v, by resistors of
¢! Chm, replace a node k of capacitance X, by a capacitor
{against ground) of c! rarad and charge It with :k(k)c1
Coulomb. Finally connect an input node { with a power supply
of z2x(i) Volt. Let voltage (c,v) be the resulting voltage at
node v € V.

Then

0 if Equ(zk,zt){v) = O
lim voltage(c,v) = 1 if Equ(zk,zt)(v) = 1
e x if Equizk,zt){v) = X

where x I8 som2 value between O and 1 depending on v.
Proof: sce (MNN 82]

it remains to extend the definition of Equ to finccmplete
transistor states. Let 2t be a transistor state. Then 2t' is
a conmpleta extension of zt if zt' is completae and

zt(t) € {(open,closed) implics zt(t) = zt'({t), i.e. the state
of undefined transistors is changed to open or closed arbi-
trarily. We define

Equlzk,zt) (v) = V (Equizk,z2t')(v);2t' is a ccmplete
extansion of zt)

- B2 -

Thiz definition captures the intuition that nothing {3 known
atcut the state of a transistor whose gate has 1o0gic value X.
donca all possible complete extension have to be considered.

This conpletes the definition of Equ and hence finishes the
doscription of the mathermatic model of tho behavior of MOS
circuits. We will now turn to the description of the sinulator
which efficiently implenents this model. The main prodblen is
to compute LKqu ectticiently. Again we concentrate on complete
transistor states first., In this case a aimple algorithm works.
¥e explore the netvork starting at the input nodes by breadth
firat scarch., All nodes encountered are entered into a set
Active from vhich nodes are deleted In order of decreasing
strength, Hence we will first delete all nodes of strength =,
then all nodes of strength Vgt then all nodes of strength
Y1t from Active. In particular, whenever we remove a
node from Active we will have computed its strength. Sipul-
tancously we propagate leglc values along essential paths into
the network.

Faor the sequel a signal 3 13 a pair (w,8t) with w £(0,1,X)
and st € K v lu{«}, We order X u T ui=] by Ky Seees ch,l-... Coay

Set S = {0,1,X}) x (K y Fu{=)) is the sect of 3ignals. Define

o: ' xS S by
{w,=st) if gt € X

y o (w,st)
(w,min(y,st)) §€ st € T ul~)

and v: § x 8§ - 5 by

(w‘.st1) if st' > ‘tz or
{u‘,at‘) v (uz,stzl - st, = st, and Wy - v,
J (x‘ atl) & 4 atl - st2 and LI P

- 63 -

Finally, we order § by (w,,s5t,) = {uz,stz) if st, < st,

or [st‘ = st2 and (w1 - “2 or v, = X)).

The following algorithm conputes Equ in the case of complete
transistor states. Let zk bae a node state, zt be a complete
transistor state and I € N be an fnput set, Then zk' =
Equ(zk,zt) iz computed by

{1) for all § € T do Signal(l] « (zk(i),=) od;

{2) for all k € N - I do Signall4i) « (zk(k),capik])) od;
(3) Active + K;

(4) !Eiiﬁ Active ¢ @

{S) do select k £ Active with maximal signal strength;

(6) delete k from Active;p
(7) for all closed transistors t with {(drain(t), socurce(t))

= (k,h) for sone node h

(8) do s + Signallh] v strength(t) o Signalik]:
(9) if 8 ¢ Signal(h]

{10) then Sigrallh] « s:

(RR)) hctive ¢+ Active U (h}

112) £

113) od

{14) od

{15) for all v € V do zk"'[v) + w where Signal(v] = (w,st)

for scme st

od

- G4 -

wWe have
Thacoren: Yhe algorithm above correctly cemputes Equ for complete
trannistor states. Moreover, it can be made to run in time O(|T]).

Proofs Por the correctness proof we refer the reader to (MNN 82].
The bound on the running tine can be seen as folluws. We represcnt
scl Aclive by a bitvector BACTIVE (!..n] with k ¢ Active {ff
BAUTIVE[K]| = true, an array of linear liats

—L 1

negel -

méq

-——aL_ - » J——Q
me Yy

E—
_-4{___
n _7ﬂ;d:———9[jjq;—wo -—w1 —2

whare the i-th list contains all nodes in Active of strength i, a
pointer nmax which points to the top-most non-enpty list and an
array of peinters of length |[K|., If k € Active then P{k] points
to the location of node k in the structure of linear lists
described above., With these data structures all operations on set
Active take time O(1). Whenever the last element of a list ia
deleted we necd to reset pointer max. Because max is never i(n-
creased (!1!) we only need to scan down the array of lists until
we find the next non-empty list. Finally observe, that every node
ls removed from Active at most twice. Thus running tine is

Ot(k|] « |?]) = O(|T]) since K s 3T. o

Extension to incomplele transistor states is quite sinple. We
use the algorithm above to dynamically compute two conplete
extensions zto and 2t of inconplete transistor state zt. In ex-
ten=sion L, we propagate O and X are far as possible and in

- 65 =

extension 2zt, we propagate 1 and X as far as pcssible. We compute

it and 2k, = Equ(zk,zt) by the algorithm described above with
line (7) replaced by

(7) for all transistors t with (drain(t),source(t)} = {k,h} for

somce h and cither zt(t) =

closed or 2t{t) = X and Signal(h)] € {O,X} x (XulTu{(=})

(7a) do zto(t) « closad;

All transistors t with zt(t) = X which are not explicitly closed
in line (7a) are open in zt . Note that the algorithm ahove closesn
a transistor in the X-state only if this helps to propagate an

0 or X. A similar algorithm (replace {0,X) by (1,X} in line 7) is
use:l to compuate zt, and zk,. Then

2k (v) A€ 2k (V) = zk,(v)
Equizk,zt) (v) =
X otherwise

Theorem: The algorithm above correctly computes the equilibriun
state. It runs in timec O(|T|).

Proof: Sce [MNN 82] o

At this point we arrived at an efficient algorithm for conmputing
the equilibrium state. Thus one clock cycle, i{.e. function settle,
is sinulated in time C(h:|T|) where h ia the number of iterations
required by the basic simulation algorithm. Note that cach iter-
ation takes time O(T|) by the results above. In qeneral, h is a
non-trivial number. For example in the case of combinatorial logic
h is the depth of the network.

There are several pethods for improving the cfficiency. We brief~-
ly describe two:

= Lh =
11 Si1inulation in topologtcal order

(n rictwor ks tharo 18 natural directicon in which the information
tlows., In particular, information always tlows trom the gate of

a tranmistor to its draftn and source bhecause the state of the gate
detormines the state of the transistor which in turn influences
the state of jts drain and scurce ncedes. In many nctworks this
filuow of infourmaticn is acyclic. We capture thiz idea in the
follewing definition,

Lot 2k bo a node state and let I < N, Genorate a graph G = (N,E)
with E = ({v,v); (v,w) = (drain(t] ,source{t)) for sonec transistor
t and cither gate (L) ¥ I or gate{t) ¢ I and S{type(r) ,zkiyate(t))
+ ¢cloged, i1.e. in graph G we close all transitors which are not
known LO be open during the entire clock cycle. Let Vi'vz""'vr
be the connectad components of G. We say that ?i influancas Vj it
there iz a transistor t with type(t) ¢ &, whose gate (5 in Vi and
whose draln and source are in Vj. Finally, we define a nutwork to
be acyclic {(with respect to state zk and (nput set 1), if the

influonce-relation i8 acyclic.

Exarpla: In a double invertep we have three conrected components

-

indicated by the dotted boxes. The network 18 acyclic. o

For acyclic networks one might pursuae the following strateqgy.

Order the connected components according to the influence rolation.
Then simulate the first component as described above until it
settles. Note that it will settle immmediately, because there 18 no
feedback within a component, Then simulate the second component, ..

- BT =

Simulation in topclogical order takes lincar time for an cntire
clock cycle. Unfortunately, this strategy does not yield the same
results as the simulation described above in general. The reason
for this is that {t uses a different tining assunption. We leave
it to the reader to find a counter cxample. However, there is

an important subclass of the acyclic networks for which the

nodified algorithm 18 equivalent to the original algorithm,

Let O ¢ N be a cet of cutput nodes. A node (8 called strong if it
is connected to an input ncde by transistors of type d. Recall
that type d transistors model pull-up devices. A node v is
inessential if all paths from v to an output node or to the

gate of a transistor pasc through a strong nede. A node v is
essential 1f it is not inessential,

Example: Consider a NMOS nand-gate and assume vy € 0, Then v,

is strony, A is essen-

tial and v1,v2 are

inegssential. o

Note that in a MOS-circuit every ncde can serve as a memory cell,
We only have to isclate it from the remainder of the circuit. In
particular node Y1 in the example above can store a bit. However,
the value stored in 4 does not influence the future computation
because v, is inessential. This observation is captured in

Lemma 13 Let zko, zk, Dbe states which agrce on all input
nodes and all essential nodes. Let “i - settle(zk‘,!), i=0,1,
f.9. the network settles In state :ki when started in zk Thon

zké(vl - zki(v) for all essential nodes v,

l.

- L8 =

oot Lot zk:) 3 =0,1,2,... Do the sogquence ct states

conputed by the basic slnulation algorithm when started with
:kl ¢ L = 0,1, It ia casy to show by induction on j that

rt&iv) = zk%(vl far all easential nodea v, Por j = 0 there is

nothing to show. For the fnduction step odserve first that the
conponents defined in the definition of equilibrium are the
sane Locause gates of transristors are controlled by essential
nodes. This finishes the argunent for non-isolated conponents,
'or izolated componantg we only have to observe that cither all
nodes in the component are inessential or all are essential,

Pron Lomea 1 owe obtain

trrnna 21 Let G be an acyclic network, let zk be a node state,

lot T < N be an Input set. If in zk' = gettle(zk,I) there are

no isolated cccential nodes then settle(zk,I}(v) = sottle(zk,1)(v)
for all esaential nodes where aottlotnp is conputed by the

rodi fied algorithm described above (sinulation in topolegical

order).

Proot: Let V,,V,,Vi,... be the conponents of the control

graph sorted according to relation "influences”. Assune that the
claim (8 wrong., Let § be mininal =uch that there 18 v © vi,

v in essontial, noa=irolated and gettlelzk, Il (v) o settlotoplzk.l)lvl-
Since 1 is ninimal and all transistors betwveen nodes in

Vi a;e controlled by essential nodes in Vj, j < 1, both sfnulationa
determing fdentical transistor atates for the transiators connecting
nodes in V.. Hence the same value (s conputed in both simulations

i
for all non-isclated nodes in V‘. a contradiction.

Lecnnac2 tells us that cinulation In topolegical order works
correctly for a large class of networks. This class of networks
includes all combinatorlial networks. Sorting in topological order
coaputes the scttling state in time O([T|). This is a significant
inprovement over the basic algoritha,

2) Local simulation

In nany cases changing the value of an input ncde influences
only a small part of the network. This observation can be built
into the simulator easily. We only have to inittalize Active
differently, nanely to all nodes which are drain or source of

a newly sct transistor and all nodes recachable from these nodes
by c¢lcsed or undetermined transistors, For details we refer the
reader to [NNN B82].

Computational expericnce with the simulator is quite faverable.
Typically, a clock cycle takes about 0.2 mzec per transistor on
a Siemens 7760.

We want to close with a short remark about the delay assumption.
The basic simulator is based on the unit delay as=umption. There
have been several proposals to extend switch level sinulation
such that propagation delays are included ([D], [HHL]). In len-
ma 2 above we went into the opposite direction. lemnma 2 above
states in a certain sense that the settling state is independent
of the particular propagation delays. Information of this sort
could be quite important in symbolic layout systems., Note that
in these systems simulaticn usually precedes compaction and
hence simulation has to be done without precise knowledge of
delaye. It would therefore be very desirable to have a simulator
or a network analyzer which indicates that a network is hazard-
frae no matter what the propagation delays are. Results In this
directdon will be reported in [Na 83).

- 70 =
felerences (fox chapters 1 ard 2]

fn 8] 3.M. fawdet: "On the Area Reguired by VLSI circuits®
CMU Conference of VLSI Syatens and Computationg,
1981, pp. 100-107

sy 82| B. Bucker: lanterner Bericht, FB 10 - Universitit des
Saarlandes, 1982

|G 81 R.P. Brent, H.T. Kung: “The Arca-Time Cumplexity of
Binary Nultiplication®, Journal of zhe AUCN, Vol, 28,
No. 3 (1981), pp. 521-514

ity At R. Chazella, L. Moriar: “A Model of Ccaputation for
VIST with Related Complexity Results®, 13th Annual
ACM-5TOC Conference (1981), pp. 318-125

|x 82| R. Kolla: *Untere Schranken fUr VLSI®, Diplomarbeit,
F8 10, Onlversitit des Saarlandes, Saarbriicken,
Weat Carnmany (1982)

it 81 T. Lengauer, XK. Mehlhorn: “The Conplexity of VLSI
Copputations®, CMU-Conference on VLSI Systens and
Computations (1981), pp. 89-99

LS 81) R.J. Lipton, R. Sedgewick: “Lower Bounds for VLSI™,
13th Annual ACN-STOC Conference (1981), pp. 300-307

(1. 81} W.K. Luk: *A Regular Layout for a Multiplier of
0(log? N) time", CMU-Confererce of VLSI Systems and
Conputationa {1981), pp. 100-107

(| MC 80) C. Moad, L. Corway: "Introduction to VLSI Systens®,
Mdison Mealaey, Peading, Mass. (1580)

(Mm 82] K. Mchlhorn, E. Meinocke-Schmide: “Laa Vegas 13 better

than Deterninisr in VLSI and Distributed Conmputing”,
14th Annual ACN-5TOC Conference (1982), pp. 330-137

.

lev 80] F.P. Preparata, J. Vuillemin: "Area-Time Optinal VLSI
Networks for Multiplying Matrices®, Inf. Proc. Let.,
VOI. "l NO- z ('93‘01.‘ w. 77-30

(pv 81) F.P. Proparata, J. Vulllemini"Arca-Tinc Optimal VLSI
Networka for Computing Integer Multiplication and
Discrete Fourier Transform®, 8th Int. Colloq. on
Autonata Theory Lanquages and Programning (Springer
Lecture Notes in Comp. Sci., No. 115), (1981), pp. 29-40

(T 80) C.D. Thompson: "A Complexity Theory for VLSI, FPh.D.
Thesis, Cept., of Comp. Sci., Carnegie-Mellon Uni-
versity (19890)

v 80] J. Vaillemin: "A Combinatorial Limit to the Computing
Power of VLSI Circuits®, 21st Annual IEEE-FOCS
Symposium (1980}, pp. 294-300

(v 83) J. Vuillemin: "A very fast Multiplication Algorithn
for VLSI Implementation®”, INRIA Report 183 (1983)

[y 79]) A.C. Yao: "Some Complexity Questions Related to
Distributive Computing”, 11th Annual ACM-STOC
Conference (1979), pp. 209-213

(y 81) A.C. Yao: "The Entropic Limitations on VLSI Computa-
tions®™, 13th Annual ACM-STOC Conference (1981),
Ppt 303-3‘ ‘

- 98 .

e ferences (for chapter 1)

n o] R.E. Bryant: "An Algorithm for MDS Legic Simulation”,
Lanba Magazine (now VLSI Magazine) 1980,
Fourth Quarter, pp. 46-5)

B dlaj R.E. Bryant: "A Switch-Level Simulation Model for
Integrated Logic Circuits®, Ph.D. Thesis, MuT,
March 1981, Raport MIT/LCS/TR-259

‘s 81b]| R.E. Dryant; "A Switch-Level Model of MOS Loglc Cir-
cults”, VLSI Conference, Edinburgh 1981, pp. 329-340

|B B3] R.E. Bryant: "A Switch-Lavel Mcdel and Sinulator
for MOS Digital Syatems", Caltech, CS Technical
Report No. 5065, 1983

| CArLaGE | M.Y. Hsueh: "Symbolic Layout and Compaction of
Integrated Circuits®, Ph.D. Thesis, EECS Division,
Univorgity of California, Berkeley, CA (1979)

D | D. Cumlugbl, H. G Man: "Lognos: A MOS transistor
oriented logic simulator with assignable dalays”™,
Technical Report, Univ. Louvain

(FLOSS | R.A. Auerbach, B.W. Lin, E.A. Elsayed: "Layvuts for
the Design of VISI Circuits®, Computer Alded Desiqn,

[HHL] M.H. Haydeman, G.D, llachtel, M.R. Lightner: "Imple-
mentation Issues of Multiple Delay Switch level
Simulation”, Techn. Report, Dept. of Electr. Eng.
and Conp. Sci., University of Colorado, Bculder, Color.

[NILL 82] T. Lengauer, K. Mechlhorn: *HILL - Hierarchical Lay-
out Language, A CAD Syeten for VLSI Deaign®™,
TR AB2-10, F¥B 10, Univ. d. Saarlandes, Saarbricken (1932)

(HILL 83] 7. Lengauer, K. MNehlhorn: “Report on the HILL
Specification Language®, TR A 83/05, FB 10 -~
Informatik, Univ. d. Saarlandes, Saarbr. (1983)

[GW 82] G. Kedem, H. Watanabe: "Optimization Techniques
for IC Layout and Compaction”, TR 117, Dept. of
Conp. S¢i., University of Rochester, Rochester,
N.Y., (1982)

|G 80] M.C. Golumbic: *Algorithmic Graph Theory and
Perfect Graphs®, Associated Press [(1980)

(L B82a] T. Lengauver: "On the Solution of Inequality Sys-
tems Relevant to IC Layout"™, Proc. of the 8th
Workshop on Graphthecoretic Mcthods in Comp. Sci.
(WG 82), Hanser Verlag, Minchen (1982)

[L 82b) T. Lengaver: "The Complexity of Compacting Hier-
archically Specified Layocuts of Integrated Circuits®,
23th POCS (1982), pp. 158-369

(L 83) T. Lenqgauer: "Efficlent Algorithms ftor the Constraint
Generation ftor Integrated Circuit Laycut Compacticn™,
23th FOCS(1982), pp. 1358-369

iM 81]) K. Mchlhorn: "Data Structures and Efficient Algo-
rithms"™, Springer Verlag, to appear

[MNN 82) X. Mohlhorm, St. Niher, M. Nowak: "HILLSIM: Ein
Simulator €dr MOS-Schaltkreise™, TR A 82/08, F8B 10,
Univ. 4. Saarlandes, Saarbriicken (1982)

(Ms 83) K. Mehlhorn, B. Schmidt: "A Single Source Shortest
Path Problem for Graphs with Separators®, Proc.
of FCT Conference 1983, LNCS, to appear

| *tLCA |

‘NN 33

i No 83]

[5ch 8)]

[SLTM)

[STICKS)

| TRICKY]

- Y4 -

N.H.E. Weste: "MULGA - An Inteiactive S..lollc
Layout System for the Design of Integrated Cir-
cuitz", The Bell Systen Technical Journal,

No. €0, Val. 6 (1981), pp. 323-857

st. Niher: Diplomarbeit, Univ. d. Saarlandes,
in preparation (1933)

M. Ncewak: Diplomarbetlt, Univ. des Saarlandes,
in preparation (1983}

B. Schmidt: Coktorarbeit, FB 10, Univ. 4. Saar-
landes, in preparation (1983)

A.C. Dunlopt "SLIM - The Translation of Symbolic
Layouts into Masx Data", Proc. of the 17th Design
Autonation Confurence, IEEZ (1980), pp. 595-602

J.D. Williams: °*STICKS - A Graphical Conpiler for
High Level LSI Design®, Nat. Comp. Conf. (1978),
pp. 289-295

A. Hanczakowsxi: "TRICKY - Synbolic Layout Systen
for Integrated Circuits”, VLSI Spring Conpcon (1981)

	A_1983_03 0000_1heitscover_Inventarnummereinarbeiten
	SFB_1983_06 0001
	SFB_1983_06 0002
	SFB_1983_06 0003
	SFB_1983_06 0004
	SFB_1983_06 0005
	SFB_1983_06 0006
	SFB_1983_06 0007
	SFB_1983_06 0008
	SFB_1983_06 0009
	SFB_1983_06 0010
	SFB_1983_06 0011
	SFB_1983_06 0012
	SFB_1983_06 0013
	SFB_1983_06 0014
	SFB_1983_06 0015
	SFB_1983_06 0016
	SFB_1983_06 0017
	SFB_1983_06 0018
	SFB_1983_06 0019
	SFB_1983_06 0020
	SFB_1983_06 0021
	SFB_1983_06 0022
	SFB_1983_06 0023
	SFB_1983_06 0024
	SFB_1983_06 0025
	SFB_1983_06 0026
	SFB_1983_06 0027
	SFB_1983_06 0028
	SFB_1983_06 0029
	SFB_1983_06 0030
	SFB_1983_06 0031
	SFB_1983_06 0032
	SFB_1983_06 0033
	SFB_1983_06 0034
	SFB_1983_06 0035
	SFB_1983_06 0036
	SFB_1983_06 0037
	SFB_1983_06 0038
	SFB_1983_06 0039
	SFB_1983_06 0040
	SFB_1983_06 0041
	SFB_1983_06 0042
	SFB_1983_06 0043
	SFB_1983_06 0044
	SFB_1983_06 0045
	SFB_1983_06 0046
	SFB_1983_06 0047
	SFB_1983_06 0048
	SFB_1983_06 0049
	SFB_1983_06 0050
	SFB_1983_06 0051
	SFB_1983_06 0052
	SFB_1983_06 0053
	SFB_1983_06 0054
	SFB_1983_06 0055
	SFB_1983_06 0056
	SFB_1983_06 0057
	SFB_1983_06 0058
	SFB_1983_06 0059
	SFB_1983_06 0060
	SFB_1983_06 0061
	SFB_1983_06 0062
	SFB_1983_06 0063
	SFB_1983_06 0064
	SFB_1983_06 0065
	SFB_1983_06 0066
	SFB_1983_06 0067
	SFB_1983_06 0068
	SFB_1983_06 0069
	SFB_1983_06 0070
	SFB_1983_06 0071
	SFB_1983_06 0072
	SFB_1983_06 0073
	SFB_1983_06 0074
	SFB_1983_06 0075

