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Both non-Hermitian systems and the behavior of emitters coupled to structured baths have been studied
intensely in recent years. Here, we study the interplay of these paradigmatic settings. In a series of
examples, we show that a single quantum emitter coupled to a non-Hermitian bath displays a number of
unconventional behaviors, many without Hermitian counterpart. We first consider a unidirectional hopping
lattice whose complex dispersion forms a loop. We identify peculiar bound states inside the loop as a
manifestation of the non-Hermitian skin effect. In the same setting, emitted photons may display spatial
amplification markedly distinct from free propagation, which can be understood with the help of the
generalized Brillouin zone. We then consider a nearest-neighbor lattice with alternating loss. We find that
the long-time emitter decay always follows a power law, which is usually invisible for Hermitian baths. Our
Letter points toward a rich landscape of anomalous quantum emitter dynamics induced by non-Hermitian
baths.
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Introduction.—A central goal in quantum optics is to
achieve strong and tunable interactions between atoms and
photons at the quantum level. A promising recent strategy
is to use nanofabricated lattices in low dimensions, which
give rise to structured environments with fundamentally
different properties than traditional approaches [1]. This
has spurred an interest in studying the dynamics of a single
or few quantum emitters coupled to structured baths [2–4].
Meanwhile, non-Hermitian (NH) physics has become

an emergent field with great current interest [5,6]. This
tendency is partially driven by the experimental deve-
lopment in dissipation engineering [7], which enables the
preparation and control of NH systems in various atomic,
molecular, and optical platforms. These NH systems enjoy
several unique features without Hermitian counterparts,
such as the NH skin effect [8] and exceptional points (EPs)
[9]. The former refers to the localization of “bulk modes”
and is related to genuine NH topology [10–12]. The latter
refers to the points in the parameter space, where the
Hamiltonian is not diagonalizable [13].
In this Letter, we marry these two fields and point out a

few genuinely NH phenomena that emerge already for
single quantum emitters coupled to structured lossy baths

in one dimension (1D). We focus on three aspects of the
quantum-emitter setting: bound states [14], photon emis-
sion dynamics, and atom decay dynamics [2–4]. For the
former two aspects, we analyze the Hatano-Nelson [15]
lattice with nontrivial point-gap topology [10]. We unveil
the existence of “hidden” bound states with skin-effect
origin [cf. Fig. 1(b)] and a diversity of dynamical regimes
[cf. Fig. 2], both without Hermitian counterparts. For the
last aspect, we analyze a lattice with passive parity-time
(PT) symmetry with EPs in the band structure. We
demonstrate an algebraic asymptotic decay of the atomic
excitation [cf. Fig. 3(b)], which is usually invisible in 1D
Hermitian systems.
Setup.—We start by considering a quantum emitter,

modeled as a two-level atom, coupled to a 1D nano-
photonic lattice with engineered photon loss. The atommay
further undergo spontaneous decay from its excited state
jei to the ground state jgi. Under the Markovian and
rotating-wave approximations, the equation of motion (in
the rotating frame) reads (ℏ ¼ 1)

_̂ρt ¼ −i½Ĥa þ Ĥp þ V̂; ρ̂t� þ Laρ̂t þ Lpρ̂t; ð1Þ
where Ĥa ¼ Δ0σ̂

ee is the atom Hamiltonian with detuning
Δ0, Ĥp ¼ P

x;x0 Jxx0 â
†
xâx0 is the photon Hamiltonian, and

V̂ ¼ gðσ̂geâ†x0 þ H:c:Þ gives the photon-atom interaction.
Here, σ̂ww

0 ≡ jwihw0j (w;w0 ¼ e, g), â†x (âx) creates (anni-
hilates) a photon at site x ∈ Z, g is the single-photon
Rabi frequency, and x0 is the atom’s location. The atom
and photon dissipators are given by La ¼ γD½σ̂ge� and
Lp ¼ κ

P
x D½L̂x�, where γ and κ control the atom decay
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and photon loss rates, respectively, and D½L̂�ρ̂≡ L̂ ρ̂ L̂† −
fL̂†L̂; ρ̂g=2 is the Lindblad superoperator. We assume there
is only single photon loss, so that L̂x ¼

P
x0 lxx0 âx0 is a

linear combination of photon annihilation operators.
The effective NH Hamiltonian then reads Ĥeff ¼

Ĥa;eff þ Ĥp;eff þ V̂ with Ĥa;eff ¼ ½Δ0 − ði=2Þγ�σ̂ee and
Ĥp;eff ¼ Ĥp − ði=2ÞκPx L̂

†
xL̂x, the latter of which is

quadratic under the above assumption. Suppose the ini-
tial state is in the single-excitation sector, such as
ρ̂0 ¼ jψ0ihψ0j with jψ0i ¼ σ̂egjgi ⊗ jvaci and jvaci
being the photon vacuum, then the solution to Eq. (1)
reads ρ̂t ¼ e−iĤeff tρ̂0e

iĤ†
eff t þ ptjgihgj ⊗ jvacihvacj with

pt ¼ 1 − Tr½e−iĤeff tρ̂0e
iĤ†

eff t� [3,16]. Therefore, as long as
we restrict ourselves to the single-excitation sector, we may
focus on studying the effective NH Hamiltonian. For
translation-invariant lattices with Jxx0 ¼ Jx−x0 , lxx0 ¼ lx−x0 ,
and x0 ¼ 0, the effective NH Hamiltonian takes the general
form

Ĥeff ¼ Δσ̂ee þ
X
k

ωkâ
†
kâk þ

gffiffiffiffi
L

p
X
k

ðσ̂geâ†k þ H:c:Þ; ð2Þ

where Δ ¼ Δ0 − ði=2Þγ, L is the lattice length,
âk ¼ L−1=2P

x e
−ikxâx, and ωk ¼ Jk − ði=2Þκjlkj2, with

Jk ¼
P

x Jxe
−ikx and lk ¼

P
x lxe

−ikx, is the complex band
dispersion of Ĥp;eff .
Bound state.—The Hermitian version of Eq. (2) has been

widely studied in the literature. Of particular interest are
photon-atom bound states, which are eigenstates of Eq. (2)
with photon profiles localized around the atom [17]. To find
the bound state in the NH case, we can follow exactly the
same procedure as in the Hermitian case: we first write
down a general state jψbi¼ ½ceσ̂egþL−1=2P

k ckâ
†
k�jgi⊗jvaci in the single-excitation sector. Imposing the eigen-

state condition Ĥeff jψbi ¼ Ebjψbi, we obtain Δce þ
ðg=LÞPk ck ¼ Ebce and ωkck þ gce ¼ Ebck; ∀ k.
Solving these equations and using that a bound state should
have ce ≠ 0, we find

Eb − Δ − ΣðEbÞ ¼ 0; ΣðEÞ ¼ g2

L

X
k

1

E − ωk
; ð3Þ

where ΣðEÞ is the self-energy of the quantum emitter. Then,
we obtain jcej2 ¼ ð1þ g2L−1 P

k jEb − ωkj−2Þ−1 and
ck ¼ gðEb − ωkÞ−1ce, whose (inverse) Fourier transform
gives the real-space photon profile. Note that the formula
jcej2 ¼ ½1 − Σ0ðEbÞ�−1 for Hermitian systems breaks down
in general due to the fact that both Eb and ωk may be
complex.
A unique feature of 1D NH systems is that the spectrum

under periodic BCs can form a loop, which is characterized
by the spectral winding number [10]. This is a signature of
NH topology and has been identified as the origin of the
NH skin effect [11,12]. A prototypical model that exhibits
such nontrivial spectral winding is the Hatano-Nelson

model with asymmetric hopping [15]. Choosing L̂x ¼ âx −
iâxþ1 [10,18] and Jx ¼ κðδx;1 þ δx;−1Þ=2, we can even
reach the maximally NH limit with unidirectional (right)
hopping [cf. Fig. 1(a)], in which case ωk ¼ κðe−ik − iÞ
under periodic BCs and thus the spectrum forms a loop
jEþ iκj ¼ κ [cf. Fig. 1(b)]. Substituting the expression of
ωk into Eq. (3) and taking the thermodynamic limit
L → ∞, one finds

ΣðEÞ ¼
� 0; jEþ iκj < κ;

g2

Eþiκ ; jEþ iκj > κ:
ð4Þ

It turns out that the self-energy vanishes inside the loop.
This result actually has a topological origin [19] and
implies the existence of a bound state “hidden” in the
loop, with its energy pinned at Δ. Its photon profile,
obtained by (inverse) Fourier transforming ck, vanishes
to the right of the emitter and decays exponentially to the
left, with localization length ξ ¼ ðln jκ=ðΔþ iκÞjÞ−1.
Notably, it does not depend on the coupling strength g.
In contrast, bound states with energies outside the loop
only arise for sufficiently large g, and feature a photon

(b)

(a)

(c)

FIG. 1. (a) Two-level quantum emitter coupled to a Hatano-
Nelson lattice with unidirectional right hopping and background
loss. The detuning of the emitter is complex, Δ ¼ ð0.3 − 0.5iÞκ.
(b) Single-excitation spectrum under periodic boundary condi-
tions (BCs) for three different coupling strengths. The schematic
drawings on top show the profiles of the bound states inside and
outside the loop, which are skin-mode- and Hermitian-like
(denoted by red and blue markers, respectively). We dub the
former “hidden” bound states, as we will see that they do not
apparently affect the emitter decay. Unlike Hermitian-like bound
states, the energy of the hidden bound state stays pinned at the
emitter detuning, irrespective of the value of g. (c) Dependence of
the localization length ξ and atomic weight jcej2 of the hidden
(red) and Hermitian-like (blue) bound states on coupling strength
g. Dashed vertical lines indicate the onset of the Hermitian-like
bound state.

PHYSICAL REVIEW LETTERS 129, 223601 (2022)

223601-2



profile that decays exponentially in the right-half space
with localization length strongly depending on g. See
Figs. 1(b) and 1(c) for an illustration, where one also finds
an opposite g dependence of the atom weight jcej2 for these
two different types of bound states.
The behavior of the hidden bound state is reminiscent of

the vacancylike bound state in Hermitian topological
lattices [20], such as the Su-Schrieffer-Heeger model [4].
Indeed, there is an analogous interpretation: removing the
site to which the atom is coupled, the resulting systems has
a skin mode with energy Δ, as long as Δ is within the loop
[10–12,21]. A bound state can then be obtained as a proper
superposition between the skin mode and the atomic
excitation. Note that in stark contrast to the Hermitian
case, there is no need to fine-tune Δ since skin modes
form a continuum. The bound states outside the loop
behave more like conventional Hermitian bound states.
Nevertheless, unlike the Hermitian case, where bound
states appear for arbitrarily small g in 1D [14], here we
need a sufficiently large g. This is closely related to the fact
that the Anderson transition in the Hatano-Nelson model
occurs at finite disorder strength [15], whereas 1D
Hermitian models immediately localize [22]. Here, an
emitter as a specific type of disorder requires finite g to
localize extensive modes in the Hatano-Nelson model to
form a bound state.
While beyond the scope of this short Letter, we mention

that some properties of the hidden bound states are
inherited by the more general Hatano-Nelson model (with
nonzero left and right hopping) even in the multiple emitter
case. For example, the eigenenergies are always pinned at
the (generally different) complex detunings, as if the
emitters did not influence each other. Further details can
be found in the companion paper [19], where we also
discuss the effect of the BCs.
Dynamics.—We move on to study the photon emission

dynamics, for which the BCs are irrelevant [23]. To be
specific, we focus on the nonunitary evolution jψ ti ¼
e−iĤeff tjψ0i starting from an excited atom jψ0i ¼ jei ⊗
jvaci, an initial state that can be easily realized in experi-
ments [24]. Expanding the time-evolved state as jψ ti¼
½ceðtÞσ̂egþL−1=2P

k ckðtÞâ†k�jgi⊗ jvaci [cαð0Þ ¼ δαe, α ¼
e, k] without loss of generality, the coefficients can be
calculated as

cαðtÞ ¼
i
2π

Z
∞

−∞
dEGαðEþ i0þÞe−iEt ð5Þ

using the resolvent method [2,25]. Here, the emitter (α ¼ e)
and photon (α ¼ k) Green’s functions are given by

GeðEÞ ¼
1

E − Δ − ΣðEÞ ; GkðEÞ ¼
gGeðEÞ
E − ωk

; ð6Þ

where ΣðEÞ follows that in Eq. (3). Note that the integral in
Eq. (5) is performed above the real axis. For the Hatano-
Nelson model, this implies that the bound states outside the

loop are picked as poles, while that inside has no apparent
contribution [26]. This is the main reason why we call the
latter “hidden,” and is consistent with its skin-effect origin
since skin modes are bulk modes associated with the
unstable poles (i.e., poles of Ge with Σ analytically
continued from the exterior of the loop). This point also
serves as a crucial difference from vacancylike bound states
in Hermitian systems [20], which do contribute to the
dynamics as regular poles.
Thanks to the simplicity of the unidirectional Hatano-

Nelson model, we can obtain the analytic expressions for
both emitter and photon dynamics by substituting ΣðEÞ ¼
g2=ðEþ iκÞ and ωk ¼ κðe−ik − iÞ into Eqs. (5) and (6). The
emitter decay is normally exponential, possibly with
oscillations or polynomial corrections. For example, taking
Δ ¼ 0, we obtain a decay rate ðκ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 − 4g2

p
Þ=2 (κ=2) for

g < κ=2 (g > κ=2), which asymptotically reads g2=κ for
g ≪ κ, as a manifestation of the continuous Zeno
effect [27].
Unlike the exponential emitter decay, the overall photon

population limL→∞L−1P
k jckðtÞj2 ¼

R
π
−πðdk=2πÞjckðtÞj2

decays asymptotically as t−1=2 due to the vanishing damp-
ing gap at k ¼ −π=2, as is understandable by evaluatingR
π
−π dke

2Imωkt [28]. The real-space dynamics of the emitted
photon can be solved exactly by Fourier transforming
ckðtÞ as

cxðtÞ ¼
ge−κt½ζ−xþ Rxð−iκζþtÞ − ζ−x− Rxð−iκζ−tÞ�

κðζþ − ζ−Þ
; ð7Þ

where x≥0 [otherwise, cxðtÞ ¼ 0], ζ� ¼ ðE� þ iκÞ=κ with
E� ¼ ½ðΔ − iκÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔþ iκÞ2 þ 4g2

p
�=2 being the poles of

GeðEÞ [with ΣðEÞ always taken as g2=ðEþ iκÞ] and
RxðzÞ¼ez−ðPx

n¼0z
n=n!Þ. One can identify several differ-

ent dynamical regimes from Eq. (7): if Imζ�≤0, the long-
time asymptotic behavior reads cxðtÞ ≃ −κe−κtð−iκtÞx−1=
½gðx − 1Þ!� for x ≥ 1, which resembles very much the
free photon propagation. Otherwise, the asymptotic expres-
sion is given by cxðtÞ ≃ ge−κtðζ−xþ e−iκζþt − ζ−x− e−iκζ−tÞ=
½κðζþ − ζ−Þ�, which implies a spatial amplification (decay)
for jζ�j < 1 (jζ�j > 1). Typical plots for all these regimes
are shown in Fig. 2.
The last dynamical regime is easiest to understand and is

common in Hermitian systems: we eventually observe the
profile of the bound state, which decays in space. The first
two regimes require the absence (or sufficiently rapid
decay) of the bound states (outside the loop), and are thus
unique to NH systems. To determine whether the spatial
amplification is freelike or emitter dependent, we can
borrow the wisdom of the generalized Brillouin zone
[8]. Excluding the bound-state and possible branch cut
contributions, the running wave contribution in real space
reads [3]
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cRWx ðtÞ ¼ g
Z

π

−π

dk
2π

e−iωktþikx

ωk − Δ − Σðωk þ iηkÞ
; ð8Þ

where ηk is an infinitesimal quantity such that ωk þ iηk lies
right outside the complex spectrum, where ΣðEÞ is analytic.
To perform the stationary-phase approximation [29], we
have to deform the integral contour from the conventional
Brillouin zone to the generalized one, during which the
contour may cross one or several poles k̃, leading to
additional terms with spatial amplification determined by
Imk̃ and temporal decay determined by Imωk̃. In our
specific example, e−ik̃ s are nothing but ζ�. If Imζ� > 0
(Imζ� < 0), which means Imωk̃ is larger (smaller) than the
imaginary energy of the running wave evaluated from the
generalized Brillouin zone [which is simply β≡ e−ik ¼ 0;
cf. Fig. 2(c)], the amplification governed by the poles
(freelike propagation) will dominate the long-time behav-
ior. We mention that the three dynamical regimes appear
also in the general Hatano-Nelson model and a similar
analysis applies [19].
Critical emitter decay.—While the emitter decay into the

Hatano-Nelson bath is trivially exponential, we show that
novel critical (algebraic) decay emerges for another simple
NH bath with alternating on-site loss. Here, the criticality
may be considered as a temporal analogy of the power-law
spatial decay of correlations in conventional critical phases
[30]. Just like the spatial case, the criticality is related to the

gaplessness of the underlying system, but along the
imaginary axis.
As illustrated in Fig. 3(a), with the sublattices consisting of

even (odd) sites denoted as A (B), this model can be readily
constructed by taking L̂x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið−1Þx þ 1
p

âx and the same
nearest-neighbor Hamiltonian Ĥp ¼ J

P
xðâ†xþ1âx þ H:c:Þ.

Suppose that the total length of the lattice is 2L, we can define
âk ¼ ½âkA; âkB�T with âkA ¼ L−1=2P

x e
−ikxâ2x and âkB ¼

L−1=2P
x e

−ikxâ2xþ1 and write down a similar effective NH
Hamiltonian as Eq. (2), except for that ωkâ

†
kâk should be

replaced by â†khkâk with

hk ¼ Jð1þ cos kÞσx þ J sin kσy −
i
2
κðσz þ σ0Þ; ð9Þ

and that âk in the coupling (third) term should be specified as
âkA or âkB, depending on whether the atom is located at a
dissipative site or not. We numerically compute the atom
decay dynamics governed by this NH Hamiltonian starting
from jψ0i ¼ jei ⊗ jvaci. As shown in Fig. 3(b), we find that
the decay asymptotically follows a power law t−1 (t−3) for the
coupling to a dissipative (nondissipative) site. We mention
that t−1 requires fine-tuning Δ to be zero, as is adopted in
Fig. 3(b); otherwise, we observe a t−3 decay after a t−1

transient [19]. Having in mind the exponential decay in the

(a)

(c)

(b)

FIG. 3. (a) Two-level quantum emitter coupled to a dissipative
(upper) or nondissipative (lower) site of a 1D lattice with
symmetric hopping and alternating on-site loss. (b) Asymptotic
algebraic decay of the atomic excitation. The power-law behavior
is t−1 and t−3 for the dissipative and nondissipative coupling,
respectively. Here, Δ ¼ 0, J ¼ κ, and g ¼ 1.5κ. (c) (left) Band
structure and the (right) density of states (DOS) for the alter-
natively lossy lattice. Dashed vertical lines indicate the excep-
tional points. Dotted curves in (b) and (c) correspond to a
perturbation that explicitly breaks the passive PT symmetry
and destroys the EPs.

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 2. Real-space dynamics of the emitted photon for Δ ¼
−2iκ, g ¼ 0.6κ (a),(b), Δ ¼ 0, g ¼ 0.6κ (c),(d) and Δ ¼ 0, g ¼
1.6κ (e),(f). Insets in (a),(c),(e) show the original (dashed) and
generalized (solid) Brillouin zone as well as the poles (red
crosses) of Eq. (8) in terms of β≡ e−ik. In (b),(d),(f), the photon
profiles have been normalized by multiplying

ffiffiffiffi
κt

p
to retrieve

probability conservation asymptotically.
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Hermitian limit [31],wemaycall this phenomenon the critical
Zeno effect, in the sense that adding dissipation qualitatively
suppresses the decay to an algebraic one.
To understand the critical decay, we first note that the NH

two-band Bloch Hamiltonian in Eq. (9) exhibits a passive
PT symmetry [9], which becomes exact after neglecting the
background loss −iκσ0=2. This passive PT choice arises
naturally from our loss-only setup, yet it can still accom-
modate genuine NH objects such as EPs. The band
dispersions read −iκ=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J2ð1þ cos kÞ − κ2=4

p
. For

not-too-strong loss rate κ < 4J, there are two EPs at kEP ¼
� arccos½κ2=ð8J2Þ − 1� in the Brillouin zone. Since these
two EPs are smoothly connected over the passive PT-
broken region, the eigenenergy with maximal imaginary
part, which is zero here, should necessarily have divergent
density of state [cf. Fig. 3(c)]. This divergence manifests
itself as a branch point in the Green’s function (6), giving
rise to an algebraic decay. See Ref. [19] for a quantitative
analysis. Recalling that the branch point has the largest
imaginary part, we know that the algebraic decay domi-
nates the long-time dynamics.
Finally, we would like to clarify that the (passive) PT-

symmetry breaking and the associated EPs are more like
a recipe rather than necessity for observing the critical
decay, which indeed survives asymmetric perturbations
[cf. Figs. 3(b) and 3(c)]. What is important is to have a
branch point on the real axis while all the poles are well
below the real axis. For example, this can be realized by
Wick rotating (i.e., multiplying by i) the Hermitian bath
with nearest-neighbor hopping [19]. Note that algebraic
decay is usually invisible for 1D periodic Hermitian baths
[3], since there are always bound states with real energies,
which dominate the long-time dynamics [32].
Conclusion and outlook.—In summary, we have studied

the bound states, photon emission, and excited-state decay
of single quantum emitters in 1D NH nanophotonic lattices.
For the Hatano-Nelson lattice, we have found hitherto
unknown hidden bound states originating from the skin
effect, and unconventional dynamical regimes of photon
propagation without Hermitian counterpart. For the alter-
natingly lossy lattice, we found critical emitter decay in the
long-time limit, which is again hindered in Hermitian
systems by stable bound states.
Our Letter opens up a plethora of possibilities for future

studies. One big direction is to examine to what extent these
NH phenomena survive on the many-body level [14,34],
where we have to deal with the full Lindblad dynamics
[35,36]. This is particularly relevant in the ultrastrong-
coupling regime [37–39], where the counterrotating terms
become relevant and the conservation of the excitation
number breaks down. Even on the single-particle level, we
can consider dissipative lattices with more complicated NH
topology [40,41], such as class AII† in 1D exhibiting theZ2

skin effect [11] and that in 3D mimicking the edge physics
of the 4D quantum Hall effect [42]. It may also be

interesting to explore the impact of higher-order [43]
and higher-dimensional exceptional objects, such as excep-
tional rings [44] and surfaces [45], whose systematic
constructions have become clear recently [46–48]. Last
but not least, introducing non-Hermiticity to nanophotonic
baths may significantly extend the freedom of engineering
effective (bath-mediated) interactions between atoms [49].
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