
An Abstract CNF-to-d-DNNF Compiler
Based on Chronological CDCL

Sibylle Möhle(B)

Max Planck Institute for Informatics, Saarland Informatics Campus E1 4,
66123 Saarbrücken, Germany
smoehle@mpi-inf.mpg.de

Abstract. We present Abstract CNF2dDNNF, a calculus describing
an approach for compiling a formula in conjunctive normal form (CNF)
into deterministic negation normal form (d-DNNF). It combines com-
ponent-based reasoning with a model enumeration approach based on
conflict-driven clause learning (CDCL) with chronological backtracking.
Its properties, such as soundness and termination, carry over to imple-
mentations which can be modeled by it. We provide a correctness proof
and a detailed example. The main conceptual differences to currently
available tools targeting d-DNNF compilation are discussed and future
research directions presented. The aim of this work is to lay the theo-
retical foundation for a novel method for d-DNNF compilation. To the
best of our knowledge, our approach is the first knowledge compilation
method using CDCL with chronological backtracking.

Keywords: Knowledge compilation · d-DNNF · Chronological CDCL

1 Introduction

In real-world applications, constraints may be modeled in conjunctive normal
form (CNF), but many tasks relevant in AI and reasoning, such as checks for
consistency, validity, clausal entailment, and implicants, can not be executed effi-
ciently on them [9]. Tackling these and other computationally expensive prob-
lems is the aim of the knowledge compilation paradigm [13]. The idea is to
translate a formula into a language in which the task of interest can be executed
efficiently [22]. The knowledge compilation map [22] contains an in-depth dis-
cussion of such languages and their properties, and other (families of) languages
have been introduced since its publication [21,25,29]. The focus in this work is
on the language deterministic decomposable negation normal form (d-DNNF)
[19]. It has been applied in planning [2,39], Bayesian reasoning [15], diagnosis
[3,43], and machine learning [28] as well as in functional E-MAJSAT [40], to men-
tion a few, and was also studied from a theoretical perspective [7,8,10]. Several
d-DNNF compilers are available [20,30,37,48], as well as a d-DNNF reasoner1.

1 http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html.
c© The Author(s) 2023
U. Sattler and M. Suda (Eds.): FroCoS 2023, LNAI 14279, pp. 195–213, 2023.
https://doi.org/10.1007/978-3-031-43369-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43369-6_11&domain=pdf
http://orcid.org/0000-0001-7883-7749
http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
https://doi.org/10.1007/978-3-031-43369-6_11

196 S. Möhle

Translating a formula from CNF to d-DNNF requires to process the search
space exhaustively. The number of variable assignments which need to be checked
is exponential in the number of variables occurring in the formula and testing
them one by one is out of question from a computational complexity point of
view. However, if the formula can be partitioned into subformulae defined over
pairwise disjoint sets of variables, these subformulae can be processed indepen-
dently and the results combined [4]. This may reduce the amount of work per
computation significantly. Consider F = (a ∨ b) ∧ (c ∨ d) defined over the set of
variables V = {a, b, c, d}. Its search space consists of 24 = 16 variable assign-
ments. The formula F can be partitioned into F1 = (a∨b) and F2 = (c∨d) defined
over the sets of variables V1 = {a, b} and V2 = {c, d}, respectively, and such that
F = F1 ∧ F2. Due to V1 ∩ V2 = ∅, d-DNNF representations of F1 and F2 can
be computed independently and conjoined obtaining a d-DNNF representation
of F . Moreover, in each computation we only need to check 22 = 4 assignments.
The subformulae F1 and F2 are called components due to the original moti-
vation originating in graph theory, and the partitioning process is referred to
as decomposition or component analysis. This approach, also called component-
based reasoning, is realized in various exact #SAT solvers [1,4,11,12,41,42,47],
and its success suggests that formulae stemming from real-world applications
decompose well enough to generate a substantial amount of work saving.

The formula F in our example satisfies decomposability [22], i.e., for each
conjunction, the conjuncts are defined over pairwise disjoint sets of variables.
We call such a formula decomposable. Negations occur only in front of literals,
hence it is in decomposable negation normal form (DNNF) [17,18]. A formula
in which for each disjunction its disjuncts are pairwise logically contradictory
satisfies determinism [22], i.e., for each disjunction C1 ∨ . . . ∨ Cn it holds that
Ci ∧ Cj ≡ ⊥ for i, j ∈ {1, . . . , n} and i 	= j. A deterministic DNNF formula is
said to be in d-DNNF. Determinism is also met by the language disjoint sum of
products (DSOP), which is a disjunction of pairwise contradictory conjunctions
of literals, and which is relevant in circuit design [5]. In a previous work [34],
we introduced an approach for translating a CNF formula into DSOP based on
CDCL with chronological backtracking. The motivation for using chronological
backtracking is twofold. First, it has shown not to significantly harm solver
performance [33,38]. Second, pairwise disjoint models are detected without the
need for blocking clauses commonly used in model enumeration based on CDCL
with non-chronological backtracking. Blocking clauses rule out already found
models, but they also slow down the solver, and avoiding their usage in model
enumeration by means of CDCL with chronological backtracking has empirically
shown to be effective [46]. Enhancing our former approach [34] by component-
based reasoning enables us to compute a d-DNNF representation of a CNF
formula. Reconsider our previous example, and suppose we obtained dsop(F1) =
a∨ (¬a∧b) and dsop(F2) = c∨ (¬c∧d). Now F ≡ F1 ∧F2, hence F ≡ dsop(F1)∧
dsop(F2) = (a ∨ (¬a ∧ b)) ∧ (c ∨ (¬c ∧ d)), which is in d-DNNF.

Our Contributions. We present Abstract CNF2dDNNF, ACD for short,
a declarative formal framework describing the compilation of CNF into d-DNNF

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 197

and a proof of its correctness. This abstract presentation allows for a thorough
understanding of our method at a conceptual level and of its correctness. If
our framework is sound, every implementation which can be modeled by it is
sound as well. This comprises optimizations and implementation details, such as
caches. ACD combines component-based reasoning and CNF-to-DSOP compi-
lation based on conflict-driven clause learning (CDCL) with chronological back-
tracking. Disjunctions with pairwise contradictory disjuncts are introduced by
decisions and subsequently flipping their value upon backtracking, while con-
junctions whose conjuncts share no variable are introduced by unit propagation
and decomposition. For the sake of simplicity, in our calculus formulae are par-
titioned into two subformulae. However, lifting it to an arbitrary number of
subcomponents is straightforward, and a corresponding generalization is pre-
sented.

2 Preliminaries

Let V be a set of propositional variables defined over the set of Boolean constants
⊥ (false) and
 (true) denoted by B = {⊥,
}. A literal is either a variable
v ∈ V or its negation ¬v. We refer to the variable of a literal � by var(�) and
extend this notation to sets and sequences of literals and formulae. We consider
formulae in conjunctive normal form (CNF) which are conjunctions of clauses
which are disjunctions of literals. A formula in disjoint sum of products (DSOP)
is a disjunction of pairwise contradictory cubes, which are conjunctions of literals.
Our target language is deterministic decomposable negation normal form (d-
DNNF), whose formulae are built of literals, conjunctions sharing no variables,
and disjunctions whose disjuncts are pairwise contradictory. We might interpret
formulae as sets of clauses and cubes and clauses and cubes as sets of literals
by writing C ∈ F and � ∈ C to refer to a clause C in a formula F and a literal
� contained in a clause or cube C, respectively. The empty CNF formula and
the empty cube are denoted by
 and the empty DSOP formula and the empty
clause by ⊥.

A total variable assignment is a mapping σ : V �→ B, and a trail I = �1 . . . �n

is a non-contradictory sequence of literals which might also be interpreted as a
(possibly partial) assignment, such that I(�) =
 iff � ∈ I. Similarly, I(C) and
I(F) are defined. We might interpret a trail I as a set of literals and write � ∈ I
to refer to the literal � on I. The empty trail is denoted by ε and the set of
variables of the literals on I by var(I). Trails and literals can be concatenated,
written I J and I �, given var(I)∩var(J) = ∅ and var(I)∩var(�) = ∅. The position
of � on the trail I is denoted by τ(I, �). The decision literals on I are annotated
by a superscript, e.g., �d, denoting open “left” branches in the sense of the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [23,24]. Flipping the value of a
decision literal can be seen as closing the corresponding left branch and starting
a “right” branch, where the decision literal �d becomes a flipped literal ¬�.

The residual of F under I, written F |I , is obtained by assigning the vari-
ables in F their truth value and by propagating truth values through Boolean

198 S. Möhle

connectives. The notion of residual is extended to clauses and literals. A unit
clause is a clause {�} containing one single literal �. By units(F) (units(F |I)) we
denote the set of unit literals in F (F |I). Similarly, decs(I) denotes the set of
decision literals on I. By writing � ∈ decs(I) (� ∈ units(F), � ∈ units(F |I)), we
refer to a decision literal � on I (unit literal in F , F |I). A trail I falsifies F , if
I(F) ≡ ⊥, i.e., F |I = ⊥. It satisfies F , I |= F , if I(F) ≡
, i.e., F |I =
, and
is then called a model of F . If var(I) = V , I is a total model, otherwise it is a
partial model.

The trail is partitioned into decision levels, starting with a decision literal and
extending until the literal preceding the next decision. The decision level function
δ : V �→ N∪{∞} returns the decision level of a variable v ∈ V . If v is unassigned,
δ(v) = ∞, and δ is updated whenever a variable is assigned or unassigned,
e.g., δ[v �→ d] if v is assigned to decision level d. We define δ(�) = δ(var(�)),
δ(C) = max{δ(�) | � ∈ C} for C 	= ⊥ and δ(I) = max{δ(�) | � ∈ I} for I 	= ε
extending this notation to sets of literals. Finally, we define δ(⊥) = δ(ε) = ∞.
By writing δ[I �→ ∞], all literals on the trail I are unassigned. The decision level
function is left-associative, i.e., δ[I �→ ∞][� �→ d] expresses that first all literals
on I are unassigned and then literal � is assigned to decision level d.

Unlike in CDCL with non-chronological backtracking [36,44,45], in chrono-
logical CDCL [33,38] literals may not be ordered on the trail in ascending order
with respect to their decision level. We write I�n (I<n, I=n) for the subsequence
of I containing all literals � with δ(�) ≤ n (δ(�) < n, δ(�) = n). The pending
search space of I is given by the assignments not yet tested [34], i.e., I and
its open right branches R(I), and is defined as O(I) = I ∨ R(I),where R(I) =∨

�∈decs(I) R=δ(�)(I) and R=δ(�)(I) = ¬� ∧ I<δ(�) for � ∈ decs(I). As an example,
for I = abd cdedf , O(I) = (a ∧ b ∧ c ∧ d ∧ e ∧ f)∨ (¬b ∧ a)∨ (¬e ∧ a ∧ b ∧ c ∧ d).
Similarly, the pending models of F are the satisfying assignments of F not yet
detected and which are given by F ∧ O(I).

3 Chronological CDCL for CNF-to-d-DNNF Compilation

In static component analysis the component structure is computed once, typ-
ically as a preprocessing step, and not altered during the further execution.
In contrast, in our approach the component structure is computed iteratively
adopting dynamic component analysis. Algorithm1 provides a general schema
in pseudo-code. It is formulated recursively, capturing the recursive nature of
dynamic component analysis. Lines 1–7 and 11 describe model enumeration
based on chronological CDCL [34], while lines 8–10 capture component anal-
ysis.

Now assume unit propagation has been carried out until completion, no con-
flict has occurred and there are still unassigned variables (line 8). If F |I can be
decomposed into two formulae G and H, we call CNF2dDNNF recursively on G
and H, conjoin the outcomes of these computations with I and add the result to
M (line 9). If I contains no decisions, the search space has been explored exhaus-
tively, otherwise chronological backtracking occurs (lines 10). The working of our
approach is shown by an example.

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 199

Algorithm 1: CNF2dDNNF(F ,V , I,M)
input : CNF F , V = var(F), I = ε, M = ⊥
output: d-DNNF M ≡ F

1 Loop
2 I ← PropagateUnits()
3 if conflict occurs then
4 if conflict level = 0 then return M else AnalyzeConflict()
5 else if I(F) = � then
6 M ← M ∨ I
7 if there are no decisions on I then return M else BacktrackChrono()
8 else if F |I can be decomposed into G and H then
9 M ← M ∨ I ∧CNF2dDNNF(G,var(G), ε,⊥)∧CNF2dDNNF(H,var(H), ε,⊥)

10 if there are no decisions on I then return M else BacktrackChrono()
11 else Decide

Example 1. Let V = {a, b, c, d, e, f, g, h} be a set of propositional variables and
F = (a) ∧ (¬a ∨ ¬b ∨ c ∨ d) ∧ (¬a ∨ ¬b ∨ e ∨ f) ∧ (b ∨ ¬c ∨ e) ∧ (b ∨ d ∨ f) ∧
(g ∨ h) be a formula defined over V . The execution is depicted as a tree in
Fig. 1. For the sake of readability, we show only the formula on which a rule is
executed, represented by a box annotated with its component level. Black arrows
correspond to “downward” rule applications, while violet (gray) arrows represent
“upwards” rule applications and are annotated with the formula returned by the
computation of a component. Ignore the rule names for now, they are intended to
clarify the working of our calculus which is presented in Sect. 4. We see that, first,
a is propagated, denoted by the black vertical arrow annotated with a and the
name of the applied rule (Unit). The residual of F under a is F |a = (¬b∨c∨d)∧
(¬b∨e∨f)∧(b∨¬c∨e)∧(b∨d∨f)∧(g∨h) (not shown). It contains no unit clause
but can be decomposed into (¬b∨c∨d)∧(¬b∨e∨f)∧(b∨¬c∨e)∧(b∨d∨f) and
(g∨h). Two new (sub)components are created (by applying rule Decompose) with
component level 01 and 02, respectively, represented by the shadowed boxes.

Since (g∨h) can not be decomposed further, model enumeration with chrono-
logical CDCL is executed on it (not shown) by deciding g (rule Decide) satisfying
(g ∨ h), followed by backtracking chronologically (BackTrue), which amounts to
negating the value of the most recent decision g, and propagating h (Unit). The
processing of (g∨h) terminates with g∨¬g∧h (CompTrue, not shown). But before
this result can be used further, the subcomponent at component level 01 needs to
be processed. Its formula is G = (¬b∨c∨d)∧(¬b∨e∨f)∧(b∨¬c∨e)∧(b∨d∨f). It
neither contains a unit nor can it be decomposed, hence we take a decision, let’s
say, bd. Now G|b = (c∨d)∧(e∨f), which is decomposed into two components with
one clause each and component level 011 and 012, respectively (Decompose).
These formulae can not be decomposed further, and they are processed inde-
pendently, similarly to (g ∨ h). Before G was decomposed, a decision was taken,
and we backtrack combining the results of its subcomponents (ComposeBack).
We have G|¬b = (¬c ∨ e)∧ (d ∨ f) resulting in two components with component

200 S. Möhle

Fig. 1. Component structure of F created by ACD.

levels 011 and 012, respectively. They are processed and their results combined,
after which the results of the subcomponents of the root component are con-
joined with a. There is no decision on the trail, and the process terminates with
M = (a)∧ (¬a∨¬b∨ c∨ d)∧ (¬a∨¬b∨ e∨ f)∧ (b∨¬c∨ e)∧ (b∨ d∨ f)∧ (g ∨h)
(ComposeEnd). Notice that although component levels can occur multiple times
throughout the computation, they are unique at any point in time.

4 Calculus

Due to its recursive nature, combining the results computed for subcompo-
nents in CNF2dDNNF is straightforward. For its formalization, however, a non-
recursive approach turned out to be better suited. Consequently, a method is
needed for matching subcomponents and their parent. For this purpose, a compo-
nent level is associated with each component. It is defined as a string of numbers
in N as follows. Suppose a component C is assigned level “d” and assume its for-
mula is decomposed into two subformulae. The corresponding subcomponents
CG and CH are assigned component levels “d ·1” and “d ·2”, respectively, with “·”
denoting string composition. Accordingly, the component level of their parent C is
given by the substring consisting of all but the last element of their level, i.e., “d”.2
The root component holds the input formula, it has no parent and its component
level is zero. A component is closed if no rule can be applied to it, and decomposed
if either at least one of its subcomponents is not closed or both its subcomponents
are closed, but their results are not yet combined. Components which are neither
closed nor decomposed are open.3 Closed components may be discarded as soon

2 From now on, we omit the quotes for the sake of readability.
3 The differentiation between open and decomposed components is purely technical

and needed for the termination proof in Sect. 5.

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 201

as their results are combined, and the computation stops as soon as the root
component is closed. With these remarks, we are ready to present our calculus.

We describe our algorithm in terms of a state transition system Abstract
CNF2dDNNF, ACD for short, over a set of global states S, a transition rela-
tion � ⊆ S × S and an initial global state S0. A global state is a set of compo-
nents. A component C is described as a seven-tuple (F, V, d, e, I, M, δ)s, where
s denotes its component state. It is c if C is closed, f if F is decomposed, and
o if C is open. The first two elements F and V refer to a formula and its set
of variables, respectively. The third element d denotes the component level of
C. If d 	= 0, then d ∈ {d′ · 1, d′ · 2}, where d′ is the component level of the par-
ent component of C, as explained above. In this manner, the component level
keeps track of the decomposition structure of F and is used to match parent
components and their subcomponents. The number of subcomponents of C is
given by e, while I and δ refer to a trail ranging over variables in V and a
decision level function with domain V , respectively. Finally, M is a formula in
d-DNNF representing the models of F found so far. A component is initialized
by (F, V, d, 0, ε, ⊥, ∞)o and closed after its computation has terminated, i.e.,
(F, V, d, 0, I, M, δ)c. Notice that in these cases e = 0. The initial global state
S0 = {C0} consists of the root component C0 = (F, V, 0, 0, ε, ⊥, ∞)o with F
and V denoting the input formula and V = var(F), while the final global state
is given by Sn = {(F, V, 0, 0, I, M, δ)c} where M ≡ F is in d-DNNF. The
transition relation � is defined as the union of transition relations �R, where R
is either Unit, Decide, BackTrue, BackFalse, CompTrue, CompFalse, Decompose,
ComposeBack or ComposeEnd. Our calculus contains three types of rules, which
can abstractly be described as follows:

α : S�{C} �R S�C′; β : S�{C} �R S�{C′, C1, C2}; γ : S�{C, C1, C2} �R S�{C′}.

In this description, S refers to the subset of the current global state consisting
of all components which are not touched by rule R, with � denoting the disjoint
set union, e.g., in α, C, C′ 	∈ S. An α rule affects a component C turning it into
C′. The rules Unit, Decide, BackTrue, BackFalse, CompTrue, and CompFalse are
α rules. A β rule modifies C obtaining C′ and creates two new components C1

and C2. Rule Decompose is the only β rule. Finally, a γ rule removes the two
components C1 and C2 from the global state and modifies their parent C. Rules
ComposeBack and ComposeEnd are γ rules. The rules are listed in Fig. 2.

Model Computation. Rules Unit, Decide, BackTrue, BackFalse, CompTrue, and
CompFalse execute model enumeration with chronological CDCL [34] and are
applicable exclusively to open components. Unit literals are assigned the decision
level of their reason, which might be lower than the current decision level (rule
Unit). Decisions can be taken only if the processed formula is not decomposable
(Decide). Backtracking occurs chronologically, i.e., to the second highest decision
level on the trail, after finding a model (BackTrue) and to the decision level
preceding the conflict level after conflict analysis (BackFalse), respectively. In
the latter case, the propagated literal is assigned the lowest level at which the
learned clause becomes unit and to which a SAT solver implementing CDCL with

202 S. Möhle

Fig. 2. ACD transition rules.

non-chronological backtracking would backtrack to. Since the literals might not
be ordered on the trail in ascending order with respect to their decision level, a
non-contiguous part of it is discarded. Finally, a component is closed if its trail
contains no decisions and either satisfies its formula (CompTrue) or a conflict
occurs at decision level zero, i.e., the conflicting clause has decision level zero
(CompFalse). In the former case, the newly found model is recorded.

Component Analysis. Rules Decompose, ComposeBack, and ComposeEnd cap-
ture the decomposition of a formula and the combination of the models of its
subformulae and thus affect multiple components.

Decompose. The state of the parent component C with formula F is o (open). The
trail I neither satisfies nor falsifies F , and F |I contains no unit clause but can

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 203

be partitioned into two formulae G and H defined over disjoint sets of variables.
Subcomponents for G and H are created, the number of subcomponents of C is
set to two and its state is changed to f (decomposed). Notice that C can only
be processed further after its subcomponents are closed.

ComposeBack. The state of the component C with formula F is f (decomposed).
Its subcomponents CG and CH with formulae G and H, respectively, have state
c (closed). Furthermore, N ≡ G and O ≡ H, hence F |I ≡ I ∧ N ∧ O, which is
added to M . This corresponds to enumerating multiple models of F in one step.
This can easily be seen by applying the distributive laws to I ∧ N ∧ O which
gives us a DSOP formula whose disjuncts are satisfying assignments of F |I . The
search space has not yet been processed exhaustively (δ(I) > 0), backtracking
to the second highest decision level occurs, and the state of C is changed back
to o (open). Finally, CG and CH are removed from the global state. If I can not
be extended to a model of F , we have N = ⊥ or O = ⊥, and I ∧ N ∧ O = ⊥.
Otherwise, I ∧ N ∧ O 	= ⊥. Both cases are captured by rule ComposeBack.

ComposeEnd. The state of the parent component C with formula F is f (decom-
posed). Its subcomponents CG and CH with formulae G and H, respectively, are
closed. Furthermore, N ≡ G and O ≡ H, hence F |I ≡ I ∧N ∧O, which is added
to M . The search space has been processed exhaustively (decs(I) = ∅), and the
state of C is set to c (closed). Finally, CG and CH are removed from the global
state. As in rule ComposeBack, either I ∧ N ∧ O = ⊥ or I ∧ N ∧ O 	= ⊥.

Example 2. Reconsider Example 1 with variables V = {a, b, c, d, e, f, g, h} and
F = (a)∧(¬a∨¬b∨c∨d)∧(¬a∨¬b∨e∨f)∧(b∨¬c∨e)∧(b∨d∨f)∧(g∨h) defined
over V . The execution trace of ACD is shown in Fig. 3. Unaffected components
are depicted in gray, and model enumeration by means of chronological CDCL
is shown only once in full detail. The execution starts with the root component
CF containing F . In step (1), the unit literal a is propagated, upon which F |a is
decomposed into (g∨h) and G creating components C(g∨h) and CG shown in (2).
Steps (3) to (6) capture model enumeration by chronological CDCL of (g∨h), i.e.,
the computation of a DSOP representation of (g∨h), after which C(g∨h) is closed.
Next, the formula G is processed by deciding b in step (7), decomposing G|b into
(c ∨ d) and (e ∨ f) and creating components C(c∨d) and C(e∨f), respectively, in
step (8). The processing of C(c∨d) and C(e∨f) occurs analogously to steps (3) to
(6) resulting in the state shown in (9). The results are conjoined with b, which is
the trail of CG and under which G|b was decomposed. Since b is a decision, it is
flipped in (10) to explore its right branch ¬b. The formula G|¬b is decomposed
into (¬c ∨ e) and (d ∨ f) and components C(¬c∨e) and C(d∨f) are created, as in
(11). Their processing, which is not shown, results in the state depicted in (12),
and the results are conjoined with the trail of CG. Since its trail contains no
decision, CG is closed, see (13). The global state now contains the root compo-
nent and its two subcomponents, which are closed, hence the rule ComposeEnd is
executed, and the computation terminates with the closed root component and
M = a∧(g∨¬g∧h)∧(b∧(c∨¬c∧d)∧(e∨¬e∧f)∨¬b∧(c∧e∨¬c)∧(d∨¬d∧f),
where M ≡ F , and which is shown in (14).

204 S. Möhle

Fig. 3. Execution trace of ACD for Example 1.

5 Proofs

For proving correctness, we first show that our calculus is sound by identifying
invariants which need to hold in a sound global state and show that they still hold
after the execution of any rule. Then we prove that for any closed component it
holds that M ≡ F and that ACD can not get stuck and terminates in a correct
state. Showing termination concludes our proof.

Definition 1 (Sound Global State). A global state S is sound if for all its
components C = (F, V, d, e, I, M, δ)s the following invariants hold:

(1) ∀k, � ∈ decs(I) . τ(I, k) < τ(I, �) =⇒ δ(k) < δ(�)
(2) δ(decs(I)) = {1, . . . , δ(I)}
(3) ∀n ∈ N . F ∧ ¬M ∧ decs�n(I) |= I�n, provided C is open or decomposed

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 205

(4) M ∨ O(I) is a d-DNNF, provided C is open or decomposed
(5) M ∨ F ∧ O(I) ≡ F
(6) e > 0 iff (A) e = 2, (B) C is decomposed, (C) S contains components CG =

(G, var(G), d · 1, eg, JG, N, δG)s, CH = (H, var(H), d · 2, eH , JH , O, δH)s,
such that F |I = G ∧ H and var(G) ∩ var(H) = ∅

(7) If e = 2 and S contains components CG = (G, var(G), d · 1, 0, JG, N, δG)c

and CH = (H, var(H), d · 2, 0, JH , O, δH)c, then F |I ≡ I ∧ N ∧ O
(8) If C is closed, then decs(I) = ∅

Invariants (1) - (5) correspond to the ones in our previous work [34]. They say
that decisions are ordered in ascending order with respect to their decision level
and that every decision level contains a decision literal. They further ensure that
literals propagated after backtracking upon finding a model are indeed implied,
that no model is enumerated multiple times and that all models are found.
Invariant (3) is only useful for open or decomposed components, since I remains
unaltered when a component is closed. Invariant (4) only holds for closed com-
ponents if I(F) = ⊥. Invariants (6) and (7) are concerned with the properties
of a parent component and its subcomponents (for the case c = 2), such as the
definition of the component level. Since, given a trail I, F |I is decomposed into
formulae G and H, we also have that F |I ≡ N ∧ O, where N ≡ G and O ≡ H.
Finally, Inv. (8) says that the trail of a closed component contains no decision.

Lemma 1 (Soundness of the Initial Global State). The initial global state
S0 = {(F, V, 0, 0, ε, ⊥, ∞)o} is sound.

Proof. Due to I = ε and e = 0 and since the (root) component is open, all
invariants in Definition 1 are trivially met.

Theorem 1 (Soundness of ACD Rules). The rules of ACD preserve
soundness, i.e., they transform a sound global state into another sound global
state.

Proof. The proof is carried out by induction over the rule applications. We
assume that prior to the application of a rule the invariants in Definition 1
are met and show that they also hold in the target state. The (parent) com-
ponent in the original state is denoted by C = (F, V, d, e, I, M, δ)s and in the
target state by C′ = (F, V, d′, e′, I ′, M ′, δ′)s

′
. Its subcomponents, if there are

any, are written CG = (G, var(G), d · 1, eG, J, N, δG)s, CH = (H, var(H), d ·
2, eH , K, O, δH)s. Unit, Decide, BackTrue, and BackFalse: Apart from the addi-
tional elements V , d, e and the component state s, the rules are defined as in the
former calculus [34]. The arguments given in the proof there apply here as well,
and after applying rules Unit, Decide, BackTrue, or BackFalse, Inv. (1) - (5) hold.
Notice that in the proof of Inv. (4), it suffices to replace “DSOP” by “d-DNNF”,
since the relevant property here is determinism. Since e′ = 0, Inv. (6) and (7) do
not apply. An open state is mapped to an open state, hence Inv. (8) holds.

CompTrue and CompFalse: Invariants (1) and (2) hold, since I remains unaffected.
Since C′ is closed, Inv. (3) and (4) are met. The proof that Inv. (5) holds is carried

206 S. Möhle

out similarly to the proof of Proposition 1 in our previous work [34] for rules
EndTrue and EndFalse, respectively. Since e′ = 0 and I ′ = I, Inv. (6) - (8) hold.

Decompose: The parent component C remains unaltered except for e′ = 2 and
for its state, which becomes f . Both its subcomponents CG and CH are open, and
we have JG = JH = ε and eG = eH = 0. Therefore, Inv. (1) - (5) hold. Invariant
(6) is satisfied by the definition of rule Decompose. Since C′ is decomposed and
CG and CH are open by definition, Inv. (7) and (8) hold as well.

ComposeBack: It suffices to show that the validity of the invariants for C′ is
preserved, since CG and CH do not occur in the target state. The most recent
decision literal is flipped, similar to rule BackTrue. The same argument to the
one given there applies, and Inv. (1) and (2) are satisfied. We need to show
that F ∧ ¬(M ∨ (I ∧ N ∧ O)) ∧ decs�n(P K �) |= (P K �)�n holds for all n. The
decision levels of the literals in P K do not change, except for the one of �, which
is decremented from e+1 to e. The literal � also stops from being a decision literal.
Since δ(P K �) = e, we can assume n ≤ e. Furthermore, F∧¬(M ∨ (I ∧ N ∧ O))∧
decs�n(P K �)) ≡ (¬I∧(F ∧¬M∧decs�n(I)))∨(F ∧¬M∧¬(N ∧ O)∧decs�n(I)),
since � is not a decision literal in P K � and I�e = P K and thus I�n = (P K)�n

by definition. By applying the induction hypothesis, we get ¬I ∧ F ∧ ¬M ∧
decs�n(P K �) |= (P K)�n, and hence F ∧¬(M ∨ (I ∧ N ∧ O))∧decs�n(P K �) |=
(P K)�n. We still need to show that F ∧¬(M ∨ (I ∧ N ∧ O))∧decs�e(P K �) |= �,
as δ(�) = e in P K � after applying ComposeBack and thus � disappears from the
proof obligation for n < e. Notice that F ∧ ¬D |= I using again the induction
hypothesis for n = e + 1. This gives us F ∧ ¬decs�e(P K) ∧ ¬� |= I and thus
F ∧ ¬decs�e(P K) ∧ ¬I |= � by conditional contraposition, and Inv. (3) holds.

For proving that Inv. (4) holds, we consider two cases: (A) I ∧ N ∧ O 	= ⊥,
i.e., there exists an extension of I which satisfies F , and (B) I ∧N ∧O = ⊥, i.e.,
all extensions of I falsify F . For both cases, we know that I ∨O(I) is a d-DNNF.

(A) We need to show that M ∨ (I ∧ N ∧ O) ∨ O(P K �) is a d-DNNF. Due
to δ(I) = e + 1, we have O(I) = I ∨ R�e+1(I) = I ∨ R�e(I) ∨ R=e+1(I). The
pending search space of P K � is given by O(P K �) = P K � ∨ R�e(P K �). But
P K = I�e and P K � = I�e � = R=e+1(I), since ¬� ∈ decs(I) and δ(¬�) = e+1.
Furthermore, R�e(P K �) = R�e(P K), since � 	∈ decs(P K �) and δ(�) = e, hence
R�e(P K �) = R�e(I). We have O(P K �) = R=e+1(I)∨R�e(I), hence O(P K �)∨
I = O(I) and (M ∨ I) ∨ O(P K �) = M ∨ O(I), which is a DSOP and hence a
d-DNNF. Now I, N , and O are defined over pairwise disjoint sets of variables
by construction, i.e., I ∧N ∧O is decomposable, and M ∨ (I ∧N ∧O)∨O(P K �)
is a d-DNNF.

(B) We need to show that M ∨ O(P K �) is a d-DNNF. As just shown,
O(P K �) ∨ I = O(I). Now M ∨ O(P K �) = M ∨ R�e+1(I). Recalling that
R�e+1(I) is equal to O(I) without I and M ∨O(I) is a d-DNNF by the premise,
M ∨ O(P K �) is a d-DNNF as well. Therefore, Inv. (4) holds.

For the proof of the validity of Inv. (5), given M ∨ F ∧ O(I) ≡ F , the same
two cases are relevant: (A) I ∧ N ∧ O 	= ⊥ and (B) I ∧ N ∧ O = ⊥.

(A) We have to show that M ∨ (I ∧ N ∧ O) ∨ (F ∧ O(P K �)) ≡ F . From
O(P K �) ∨ I = O(I) we get M ∨ (F ∧ O(I)) = M ∨ (F ∧ (O(P K �)) ∨ I) =

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 207

M∨(F∧O(P K �))∨(F∧I) ≡ F . But F∧I ≡ I∧N∧O. Therefore M∨(F∧O(I)) ≡
M ∨ (F ∧ O(P K �)) ∨ (I ∧ N ∧ O) = M ∨ (I ∧ N ∧ O) ∨ (F ∧ O(P K �)) ≡ F .

(B) We must show that M ∨ (F ∧ O(P K �)) ≡ F . Similarly to (A) we have
M ∨ (F ∧ O(I)) ≡ M ∨ (F ∧ O(P K �)) ∨ (F ∧ I) ≡ M ∨ (F ∧ O(P K �)) ≡ F ,
due to F ∧ I ≡ F . Therefore, Inv. (5) holds after applying rule ComposeBack.
We have e′ = 0, and C′ is open, hence Inv. (6) - (8) trivially hold.

ComposeEnd: It suffices to show that after applying rule ComposeBack the invari-
ants are met by C′, since its subcomponent states CG and CH do not occur in
the target state anymore. Due to I ′ = I and decs(I) = ∅ and since C′ is closed,
Inv. (1) - (4) trivially hold.

For proving that invariant (5) holds after applying rule ComposeEnd, i.e., that
M ∨ (I ∧N ∧O)∨ (F ∧O(I)) ≡ F , the same two cases need to be distinguished:
(A) I ∧ N ∧ O 	= ⊥ and (B) I ∧ N ∧ O = ⊥.

(A) From decs(I) = ∅, we get O(I) = I and F ∧O(I) = F ∧ I. Recalling that
F ∧I ≡ I ∧N ∧O, we obtain M ∨(I ∧N ∧O)∨(F ∧O(I)) ≡ M ∨(F ∧O(I)) ≡ F
by the premise.

(B) We have M ∨ (I ∧ N ∧ O) ∨ (F ∧ O(I)) = M ∨ (F ∧ O(I)) ≡ F by the
premise, and Inv. (5) holds after executing rule ComposeEnd. Invariants (6) - (8)
trivially hold, due to e′ = 0 and I ′ = I and hence decs(I ′) = ∅.

Corollary 1 (Soundness of ACD Run). ACD starting with an initial global
state is sound.

Proof. The initial state is sound by Lemma 1, and all rule applications lead to
a sound state according to Theorem 1.

Lemma 2 (Correctness of Closed Component State). For any closed
component (F, V, d, 0, I, M, δ)c it holds that M ≡ F .

Proof. Follows from Theorem 1, proof of Inv. (5) for rules CompTrue, CompFalse,
and ComposeEnd, which are the only rules closing a component.

Theorem 2 (Correctness of Final Global State). In the final global state
Sn = {(F, V, d, 0, I, M, δ)c} of ACD, M ≡ F holds.

Proof. Correctness of the closed root component follows from Lemma 2. We need
to show that the final global state contains exactly the closed root component.
The initial global state consists of the open root component. Additional compo-
nents are created exclusively by rule Decompose, and a parent component state
can only be closed by rule ComposeEnd, which also removes its subcomponents
from the global state. Hence the root component can only be closed if it has no
subcomponents. But since the initial global state contains exclusively the root
component, the final global state contains only the closed root component.

Theorem 3 (Progress). ACD always makes progress.

208 S. Möhle

Fig. 4. Rule applications lead to smaller global states.

Proof. The proof is conducted by induction over the rules. We show that as
long as the root component is not closed, a rule is applicable. For the case
S � {C}, where C = (F, V, d, 0, I, M, δ)o has no subcomponents, the proof
is identical to the one showing progress in our previous work [34] replacing
EndTrue with CompTrue and EndFalse with CompFalse, and by checking whether
the preconditions for rule Decompose are met if rule Unit is not applicable and
before taking a decision. Now let the global state be given by S � {C} where
C = (F, V, d, 2, I, M, δ)f is decomposed. Due to Inv. (6), S contains CG =
(G, var(G), d · 1, eG, JG, N, δG)s and CH = (H, var(H), d · 2, eH , JH , O, δH)s

such that F |I = G ∧ H and var(G)∩ var(H) = ∅. Assume s = c for both CG and
CH . If decs(I) = ∅, rule ComposeEnd is applicable. Otherwise, similarly to rule
BackTrue, we can show that all preconditions of rule ComposeBack are met. If
instead s ∈ {f, o} for at least one of CG and CH , the non-closed component(s) are
processed further, and as soon as both CG and CH are closed, rule ComposeEnd
or ComposeBack can be applied. This proves that ACD always makes progress.

Theorem 4 (Termination). ACD always terminates.

Proof. We need to show that no infinite sequence of rule applications can happen.
To this end, we define a strict, well-founded ordering �ACD on the global states
and show that S �R T implies S �ACD T for all S, T ∈ S and rules R in ACD.
Global states are sets of components, and �ACD is the multiset extension of a
component ordering �c= (�cl,�tr,�cs), where �cl, �tr, and �cs are orderings on
component levels, trails, and component states, respectively. We want to compare
trails defined over the same set of variables V , and to this end we represent them

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 209

Fig. 5. Generalized transition rules.

as lists over {0, 1, 2}. A trail I = �1 . . . �k defined over V , where k ≤ |V |, is
represented as [l1, . . . , lk, 2, . . . , 2], where li = 0 if �i is a propagation literal and
li = 1 if �i is a decision literal. The last |V | − m positions with value 2 represent
the unassigned variables. Trails defined over the same variable set are encoded
into lists of the same length. This representation induces a lexicographic order
>lex on trails, and we define �tr as the restriction of >lex to {[l1, . . . , l|V |] | li ∈
{0, 1, 2} for 1 ≤ i ≤ |V |}, i.e., we have t1 �tr t2 if t1 >lex t2. The ordering �tr is
well-founded, its minimal element is [0, . . . , 0]. The component state takes values
in {o, f, c}, and we define �cs as >lex, i.e., s1 �cs s2 if s1 >lex s2. The minimal
element of �cs is c, hence �cs is well-founded. Given two component levels d1 and
d2, we define d1 �cl d2 if length(d1) < length(d2). This may seem counterintuitive
but is needed to ensure that the execution of rule Decompose results in a smaller
state, since both the component state and the trail of the new subcomponents
are of higher order than those of their parent. To see that �cs is well-founded,
recall that we consider finite variable sets. Their size provides an upper limit on
the length of the component level representation and a minimal element of �cs.

Now we define the component ordering �c= (�cl,�tr,�cs). Let two compo-
nents be C1 = (d1, t1, s1) and C2 = (d2, t2, s2). We have C1 �c C2 if C1 	= C2 and
d1 �cl d2 or d1 = d2 and either t1 �tr t2 or t1 = t2 and s1 �cs s2. Clearly �c is
well-founded, since �tr, �cs, and �cl are well-founded. For two global states S and
T , we have S �ACD T if S 	= T and for each component C such that C is larger
in T than in S with respect to �c, S contains a component C′ that is larger in S
than in T . Since �c is well-founded, also �ACD is well-founded. Figure 4 shows
that each rule application leads to a smaller global state, concluding our proof.

6 Generalization

The generalized rules are listed in Fig. 5. In our generalized framework, we have
F |I =

∧n
i=1 Gi, and var(Gi) ∩ var(Gj) = ∅ for i, j ∈ {1, . . . , n} and i 	= j (rule

DecomposeG). Similarly to their equivalents in ACD, rules ComposeBackG and
ComposeEndG are applicable if all subcomponents are closed.

210 S. Möhle

7 Discussion

We have presented Abstract CNF2dDNNF, or ACD for short, a formal
framework for compiling a formula in CNF into d-DNNF combining CDCL-
based model enumeration with chronological backtracking [34] and dynamic
component analysis [4]. Conflict-driven clause learning enables our framework to
escape regions without solution early, and chronological backtracking prevents
multiple model enumeration without the need for remembering already found
models using blocking clauses, which slow down unit propagation. However, the
absence of blocking clauses also prevents the use of restarts. If exclusively the
rules Unit, Decide, BackTrue, BackFalse, CompTrue, and CompFalse are used, a
DSOP representation of F is computed. Unit propagation is prioritized due to
its potential to reduce the number of decisions and thus of right branches to be
explored. Favoring decompositions over decisions may also shrink a larger part
of the search space. Our framework lays the theoretical foundation for practical
All-SAT and #SAT solving based on chronological CDCL. Any implementation
which can be modeled by ACD exhibits its properties, in particular its correct-
ness, which has been established in a formal proof.

Comparison with Available Tools. There exist other knowledge compilers
addressing d-DNNFs. We want to mention c2d [20], Dsharp [37], and D4 [30],
which also execute an exhaustive search and conflict analysis. However, our app-
roach differs conceptually from these tools in several ways. The most prominent
ones are the use of CDCL with chronological backtracking [33,38] instead of
CDCL with non-chronological backtracking and the way the d-DNNF is cre-
ated. Our method generates DSOP representations of formulae which can not
be decomposed further by an exhaustive (partial) model enumeration and then
combines the result, while the tools mentioned above generate the d-DNNF by
recording the execution trace as a graph [26,27]. As ACD, both D4 and Dsharp
adopt a dynamic decomposition strategy, while c2d constructs a decomposition
tree which it then uses for for component analysis.

Future Research Directions. We plan to implement a proof of concept of
our calculus in order to compare the size of the returned d-DNNF with the ones
obtained by c2d, D4, and Dsharp. For dynamic component analysis, one could
follow the algorithm implemented in COMPSAT [6], while dual reasoning [32]
and logical entailment [35] enable the detection of short partial models. This
is particularly interesting in tasks where the length of the d-DNNF is crucial.
Dual reasoning has shown to be almost competitive on CNFs if the search space
is small, we therefore expect that component analysis boosts its performance.
The major challenge posed by the second approach lies in an efficient imple-
mentation of the oracle calls required by the entailment checks. It would be
interesting to investigate the impact of dynamic component analysis on a recent
implementation [46] of model enumeration by chronological CDCL [34]. Cache
structures, being an inherent part of modern knowledge compilers and #SAT
solvers [11,16,19,20,30,31,37,41,42,47,49] due to their positive impact on solver
efficiency [1], should be added to any implementation of our framework. Finally,

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 211

an important research topic is that of optimizing the encoding of a formula
making best use of component analysis [14]. Related to this question is whether
formulae stemming from practical applications are decomposable in general.

Acknowledgements. My thanks go to Armin Biere for a fruitful discussion when I
got stuck in a first, very raw version of the proof, and to Martin Bromberger for his
input enhancing it.

References

1. Bacchus, F., Dalmao, S., Pitassi, T.: DPLL with caching: a new algorithm for
#SAT and Bayesian inference. Electron. Colloquium Comput. Complex. TR03-
003 (2003)

2. Barrett, A.: From hybrid systems to universal plans via domain compilation. In:
ICAPS, pp. 44–51. AAAI (2004)

3. Barrett, A.: Model compilation for real-time planning and diagnosis with feedback.
In: IJCAI, pp. 1195–1200. Professional Book Center (2005)

4. Bayardo Jr., R., Pehoushek, J.: Counting models using connected components. In:
AAAI/IAAI, pp. 157–162. AAAI Press/The MIT Press (2000)

5. Bernasconi, A., Ciriani, V., Luccio, F., Pagli, L.: Compact DSOP and partial DSOP
forms. Theory Comput. Syst. 53(4), 583–608 (2013)

6. Biere, A., Sinz, C.: Decomposing SAT problems into connected components. J.
Satisf. Boolean Model. Comput. 2(1–4), 201–208 (2006)

7. Bollig, B., Buttkus, M.: On limitations of structured (deterministic) DNNFs. The-
ory Comput. Syst. 64(5), 799–825 (2020)

8. Bollig, B., Farenholtz, M.: On the relation between structured d-DNNFs and SDDs.
Theory Comput. Syst. 65(2), 274–295 (2021)

9. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: On compiling CNFs into struc-
tured deterministic DNNFs. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS,
vol. 9340, pp. 199–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24318-4_15

10. Bova, S., Capelli, F., Mengel, S., Slivovsky, F.: Knowledge compilation meets com-
munication complexity. In: IJCAI, pp. 1008–1014. IJCAI/AAAI Press (2016)

11. Burchard, J., Schubert, T., Becker, B.: Laissez-faire caching for parallel #SAT
solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 46–61.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24318-4_5

12. Burchard, J., Schubert, T., Becker, B.: Distributed parallel #SAT solving. In:
CLUSTER, pp. 326–335. IEEE Computer Society (2016)

13. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Commun. 10(3–
4), 137–150 (1997)

14. Chavira, M., Darwiche, A.: Encoding CNFs to empower component analysis. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 61–74. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948_9

15. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks for
exact inference. Int. J. Approx. Reason. 42(1–2), 4–20 (2006)

16. Chu, G., Harwood, A., Stuckey, P.J.: Cache conscious data structures for Boolean
satisfiability solvers. J. Satisf. Boolean Model. Comput. 6(1–3), 99–120 (2009)

17. Darwiche, A.: Compiling knowledge into decomposable negation normal form. In:
IJCAI, pp. 284–289. Morgan Kaufmann (1999)

https://doi.org/10.1007/978-3-319-24318-4_15
https://doi.org/10.1007/978-3-319-24318-4_15
https://doi.org/10.1007/978-3-319-24318-4_5
https://doi.org/10.1007/11814948_9

212 S. Möhle

18. Darwiche, A.: Decomposable negation normal norm. J. ACM 48(4), 608–647 (2001)
19. Darwiche, A.: On the tractable counting of theory models and its application to

truth maintenance and belief revision. J. Appl. Non Class. Logics 11(1–2), 11–34
(2001)

20. Darwiche, A.: New advances in compiling CNF into decomposable negation normal
form. In: ECAI, pp. 328–332. IOS Press (2004)

21. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: IJCAI, pp. 819–826. IJCAI/AAAI (2011)

22. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

23. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

24. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7(3), 201–215 (1960)

25. Fargier, H., Mengin, J.: A knowledge compilation map for conditional preference
statements-based languages. In: AAMAS, pp. 492–500. ACM (2021)

26. Huang, J., Darwiche, A.: DPLL with a trace: From SAT to knowledge compilation.
In: IJCAI, pp. 156–162. Professional Book Center (2005)

27. Huang, J., Darwiche, A.: The language of search. J. Artif. Intell. Res. 29, 191–219
(2007)

28. Huang, X., Izza, Y., Ignatiev, A., Cooper, M.C., Asher, N., Marques-Silva, J.:
Tractable explanations for d-DNNF classifiers. In: AAAI, pp. 5719–5728. AAAI
Press (2022)

29. Koriche, F., Lagniez, J., Marquis, P., Thomas, S.: Knowledge compilation for model
counting: affine decision trees. In: IJCAI, pp. 947–953. IJCAI/AAAI (2013)

30. Lagniez, J., Marquis, P.: An improved Decision-DNNF compiler. In: IJCAI, pp.
667–673. ijcai.org (2017)

31. Lagniez, J., Marquis, P., Szczepanski, N.: DMC: a distributed model counter. In:
IJCAI, pp. 1331–1338. ijcai.org (2018)

32. Möhle, S., Biere, A.: Dualizing projected model counting. In: ICTAI, pp. 702–709.
IEEE (2018)

33. Möhle, S., Biere, A.: Backing backtracking. In: Janota, M., Lynce, I. (eds.) SAT
2019. LNCS, vol. 11628, pp. 250–266. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24258-9_18

34. Möhle, S., Biere, A.: Combining conflict-driven clause learning and chronological
backtracking for propositional model counting. In: GCAI. EPiC Series in Comput-
ing, vol. 65, pp. 113–126. EasyChair (2019)

35. Möhle, S., Sebastiani, R., Biere, A.: Four flavors of entailment. In: Pulina, L., Seidl,
M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 62–71. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-51825-7_5

36. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535. ACM (2001)

37. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: fast d-DNNF compila-
tion with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI),
vol. 7310, pp. 356–361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30353-1_36

38. Nadel, A., Ryvchin, V.: Chronological backtracking. In: Beyersdorff, O., Winter-
steiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 111–121. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94144-8_7

https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-030-24258-9_18
https://doi.org/10.1007/978-3-030-51825-7_5
https://doi.org/10.1007/978-3-030-51825-7_5
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-642-30353-1_36
https://doi.org/10.1007/978-3-319-94144-8_7

An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL 213

39. Palacios, H., Bonet, B., Darwiche, A., Geffner, H.: Pruning conformant plans by
counting models on compiled d-DNNF representations. In: ICAPS, pp. 141–150.
AAAI (2005)

40. Pipatsrisawat, K., Darwiche, A.: A new d-DNNF-based bound computation algo-
rithm for functional E-MAJSAT. In: IJCAI, pp. 590–595 (2009)

41. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT (2004)

42. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: a scalable probabilistic exact
model counter. In: IJCAI, pp. 1169–1176. ijcai.org (2019)

43. Siddiqi, S.A., Huang, J.: Probabilistic sequential diagnosis by compilation. In:
ISAIM (2008)

44. Marques-Silva, J.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfi-
ability. In: ICCAD, pp. 220–227. IEEE Computer Society/ACM (1996)

45. Marques-Silva, J.M., Sakallah, K.A.: GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

46. Spallitta, G., Sebastiani, R., Biere, A.: Enumerating disjoint partial models without
blocking clauses. CoRR abs/2306.00461 (2023)

47. Thurley, M.: sharpSAT – counting models with advanced component caching and
implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_38

48. de Uña, D., Gange, G., Schachte, P., Stuckey, P.J.: Compiling CP subproblems to
MDDs and d-DNNFs. Constraints An Int. J. 24(1), 56–93 (2019)

49. Zhang, L., Malik, S.: Cache performance of SAT solvers: a case study for efficient
implementation of algorithms. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003.
LNCS, vol. 2919, pp. 287–298. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24605-3_22

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11814948_38
https://doi.org/10.1007/978-3-540-24605-3_22
https://doi.org/10.1007/978-3-540-24605-3_22
http://creativecommons.org/licenses/by/4.0/

	An Abstract CNF-to-d-DNNF Compiler Based on Chronological CDCL
	1 Introduction
	2 Preliminaries
	3 Chronological CDCL for CNF-to-d-DNNF Compilation
	4 Calculus
	5 Proofs
	6 Generalization
	7 Discussion
	References

