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ABsTRACT: Particle physics experiments often require the simultaneous reconstruction of many
interaction vertices. Usually, this problem is solved by ad hoc heuristic algorithms. We propose
a universal approach to address the multiple vertex finding through a principled formulation as
a minimum-cost lifted multicut problem. The suggested algorithm is tested in a typical LHC
environment with multiple proton-proton interaction vertices. Reconstruction errors caused by the
particle detectors complicate the solution and require the introduction of special metrics to assess
the vertex-finding performance. We demonstrate that the minimum-cost lifted multicut approach
outperforms heuristic algorithms and works well up to the highest vertex multiplicity expected
at the LHC.
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1 Introduction

In particle physics experiments, many problems require a precise reconstruction of vertices — points
in 3D space where particle interactions occur. Knowledge of the positions and features of such
vertices provides valuable information about the underlying physics of these interactions. There are
numerous examples: B physics, heavy-flavour jet identification, primary event vertex reconstruction,
search for exotic particles as new physics manifestations, etc. Except for a few specifically designed
detectors (emulsions, Wilson chamber, etc.), rarely used in modern experiments, the vertices are not
directly detectable. The presence of vertices is usually inferred from 3D traces of charged stable or
quasi-stable particles produced in the interaction. Various tracking detectors measure the trajectories
of these particles (tracks) in space. The trajectories can be extrapolated to a single 3D point, which
represents the interaction vertex position [1].

Despite the simplicity of the vertex reconstruction idea, its real-life exploitation encounters
problems. For example, at the Large Hadron Collider (LHC) at the end of Run 2, a typical recorded
event may exhibit up to ~80 primary proton-proton interactions, and numerous produced charged
particles underwent further interactions leading to additional vertices, distributed in significant 3D



volumes. The expected number of proton-proton interactions in a single event at the LHC after
the planned high-luminosity upgrade (HL-LHC) may reach 200-300, resulting in a few thousand
reconstructed tracks. The exact amount of vertices in this set of reconstructed tracks is not known
a priori. Thus, an efficient inclusive vertex-reconstruction algorithm needs first to determine how
many vertices are present in a given track collection, then to assign the reconstructed tracks to these
assumed vertices and, finally, to determine the coordinates of each vertex. The track measurement
uncertainties, which may differ by a factor of 10 for different tracks and often are comparable with
the vertex-vertex distances, cause additional complications. These uncertainties make an exact
crossing of track pairs in 3D space impossible: even if two charged particles are produced in the
same interaction point, their reconstructed trajectories will only be close to the true vertex position
and to each other, up to the corresponding uncertainties.

The explicit reconstruction of multiple vertices from a given track collection can be addressed
in a graph-based approach. In fact, all space trajectories of the particles produced in a single
vertex should be pairwise compatible, i.e. every pair of tracks should be close to each other in
some volume around the true vertex position. Therefore, a compatibility (adjacency) graph can be
constructed where every node represents a track. Two nodes are connected by an edge if and only if
the distance of the corresponding trajectories is small. In the ideal case, every vertex is represented
by a fully connected, isolated subgraph in such a graph. In a realistic scenario, track measurement
errors shuffle tracks among different vertices, resulting in a large number of fake edges in the
compatibility graph. Yet, it can be tried to partition the full graph into non-overlapping components
by cutting some edges so that the remaining edges represent track pairs with minimal distances.
Each such graph component determines a union of close-by tracks which can be considered as a
vertex approximation.

The present paper focuses on finding primary proton-proton interaction vertices at the LHC.
The typical transverse width of the LHC proton beam at the interaction region is ~ 10 pm, and
the two beams cross each other at a very small angle. As a result, the primary interaction vertices
occur in a very narrow and long volume which can be approximated by a line, making this problem
effectively one-dimensional. Subsequent decays of the particles produced in the detector volume
and their interactions with the detector material, requiring an explicit 3D treatment, will not be
considered here. Constraining the vertex positions to a line preserves all important data features
while making data generation and comparison with existing approaches much easier.

To illustrate the primary-vertex reconstruction problem, figure 1 shows two zoomed-in regions
of a typical simulated LHC event with several pileup interactions.In both plots, the true positions
of interaction vertices are shown, together with charged particle trajectories displaced due to
reconstruction uncertainties. Several true interaction vertices in these plots do not have associated
tracks because all emanated particles in this interaction are outside of the tracking detector’s sensitive
volume, see section 3 for the details. The overlap of the red (from hard-scatter vertex), blue and grey
(from nearby pileup vertices) tracks in the centre of the bottom plot on figure 1 is clearly visible.

Experiments at the LHC use heuristic algorithms [3—5] to reconstruct multiple proton-proton
interaction vertices. Several other approaches can be found in the literature, including medical
imaging-inspired algorithms [6] and the RAVE package [7] implementing the deterministic annealing
algorithm [8]. The latter targets a universal multi-vertex reconstruction, but was not yet used to
directly reconstruct primary vertices.
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Figure 1. Two regions of a typical LHC event in the ATLAS detector with many pileup interactions [2]. True
positions of the proton-proton interactions are shown, as well as the reconstructed trajectories (tracks) of the
produced particles scattered due to reconstruction uncertainties. Some truth interaction vertices do not have
associated tracks because all emanated particles are outside of the sensitive detector phase space and not
reconstructed. These pictures illustrate typical track densities and overlap of the tracks produced in nearby
interaction vertices. Both, tracks associated with the hard-scattering (HS) and pileup (PU) are shown.

This article presents an implementation of the Lifted Multicut Graph Partitioning algorithm
(LMC), which solves the inclusive vertex reconstruction problem described above. Section 2
describes the LMC algorithm and details of its implementation for the vertex finding application.
Section 3 describes the simulated samples which are used to test the algorithm performance. In
section 4, features of the simulated samples are discussed. Section 5 introduces edge cost functions
used in the graph partitioning. In section 6, the metrics are introduced to estimate the algorithm
performance and to compare it with other existing approaches. Section 7 presents the performance
of the LMC approach in simulation. In section 8, conclusions are made.



2 Minimum-cost multicuts and lifted multicut algorithm for cluster finding

The compatibility (adjacency) graph representation of the reconstructed track set allows to formulate
the primary-vertex finding problem as a minimum-cost lifted multicut graph-partitioning problem.
This problem was originally proposed in Reference [9] in the context of image segmentation and
mesh decomposition. It is a generalization of the better-known minimum cost multicut problem,
also referred to as the weighted correlation clustering problem [10, 11]. The minimum cost multicut
problem is a grouping problem defined for a graph G = (V, E) and a cost function ¢ : E — R
which assigns to all edges e € E a real-valued cost or reward for being cut. Then, the minimum cost
multicut problem is to find a binary edge labelling y according to

min Cey 2.1
ye{o,l}E;g e
subject to
VC ecycles(G) YeeC:ye< > ye. 2.2)

e’eC\{e}
The constraints on the feasible set of labellings y given in equation (2.2) ensure that the solution of
the multicut problem relates one-to-one to the decompositions of graph G, by ensuring for every
cycle in G that if an edge is cut within the cycle (y, = 1), so needs to be at least one other. Trivial
optimal solutions are avoided by assigning positive (attractive) costs c. to edges between nodes
v,w € V that likely belong to the same component, while negative (repulsive) costs are assigned to
edges that likely belong to different components.

The minimum cost lifted multicut problem (LMC) generalizes over the problem defined in
equation (2.1)—equation (2.2) by adding a second set of edges that defines additional, potentially
long-range costs without altering the set of feasible solutions. It thus defines a second set of edges F’
between the nodes V of G, resulting in a lifted graph G’ = (V, E U F), on which we can define a
cost function ¢’ : E U F — R. Then, equation (2.1) and equation (2.2) are optimized over all edges
in E U F and two additional sets of constraints are defined according to [9]

Vv.w € F VP ev,w—paths(G)  yuw £ . ye 2.3)
ecP
Vo, weF VCev,w=cuts(G): 1=y < 3 (1-7,) 2.4)
eeC

to ensure that the feasible solutions to the LMC problem still relate one-to-one to the decompositions
of the original graph G.

For the vertex-finding problem, this formulation allows encoding Euclidean distance constraints
in the structure of graph G (e.g. point observations that are spatially distant can not originate from
the same vertex), while the cost function can be naturally defined in the distance significance space
to take into account the measurement errors. The Euclidean distance and its significance can be very
different in case of significant reconstruction errors, the /ifted multicut formulation encodes both
metrics in the same graph.

The minimum cost multicut problem is np-hard, and so is the minimum cost LMC problem [12].
Yet, efficient heuristic solvers provide practically good solutions [9, 13—16]. Here, we resolve to



use the primal feasible heuristic KLj that has been proposed in Reference [9] and published in an
open-source library.! KL;j is an iterative approach that produces a sequence of feasible solutions
whose cost decreases monotonically. It takes as input an initial edge labelling (for example, all
edge labels are initially set to 0), a lifted graph and costs defined on all edges. In every step, it
either moves nodes between two neighbouring components, moves nodes from one component into
a new component or joins two components such as to decrease the cost of the multicut maximally
according to equation (2.1).

Finally, the compatibility (adjacency) graph partitioning defines the splitting of the initial track
collection into a set of clusters consisting of linked tracks with minimal cost. This set of track
clusters is a solution of the primary-vertex finding problem, each cluster representing a vertex from
which all included tracks emanate.

3 Data simulation

To estimate the track clustering performance based on the compatibility graph partitioning with
the LMC algorithm, we simulated data using DELPHES [17]. The framework allows to perform a
fast and realistic simulation of a general-purpose collider detector composed of an inner tracker,
electromagnetic and hadron calorimeters, and a muon system. For this study, we added a detailed
parameterisation of the ATLAS detector tracking resolution to the framework.

To simulate the pileup vertices and hard-scattering events, a sufficiently large amount of
minimum-bias interaction events was prepared, consisting of single, double, and non-diffractive
processes. These events have been generated using the Pythia 8 [18] event generator. As the main
source of hard-scattering interactions, #f events are used, also generated with Pythia 8. To simulate
an LHC collision event with full pileup, a single ¢f event is mixed with a number of minimum-bias
events, distributed according to a Poisson distribution with a mean corresponding to a chosen
luminosity. The interaction vertices are then distributed along the LHC beam trajectory inside the
detector, according to typical interaction region parameters for ATLAS. Two different descriptions
are used: a Gaussian with o, = 35 mm for a collision energy of 13 TeV to be compared ATLAS Run 2
results [4], and a Gaussian with o, = 42 mm for 14 TeV to emulate the HL-LHC environment [19].
Since the LHC beam width is very small, in this simulation it is neglected.

The acceptance of the ATLAS detector allows for reconstructing charged particle trajectories
in a limited phase space of p; > 500MeV and || < 2.5. Some minimum-bias proton-proton
interactions produce only particles outside the sensitive phase space of the ATLAS detector, which
makes them unreconstructable. Positions of interactions with a single track in the ATLAS acceptance
can be reconstructed, but this vertex category is contaminated by tracks that are strongly displaced
by measurement errors. In the following, a reconstructable truth vertex refers to the true position of
a proton-proton interaction producing at least two tracks within the ATLAS detector acceptance.

All tracks produced in an event and falling into the sensitive ATLAS detector phase space are
smeared according to the parameterised ATLAS detector resolution [20, 21]. Tracks with smeared
parameters are referred to as reconstructed tracks in the following. The set of reconstructed tracks
corresponding to a full pileup event is used as input for the performance estimation of the clustering

thttps://github.com/bjoern-andres/graph.
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algorithms. DELPHES samples used in this paper have been prepared with different energies and
different pileup conditions (table 1).

Table 1. DELPHES samples used to estimate the LMC performance. The column Nfr‘]’f"‘ reports the total
number of reconstructed tracks in simulated events. The last three columns show the average numbers of true
vertices with Ny = 0, 1, >1 correspondingly. True vertices with Ny >1 are considered reconstructable.

Energy (u) Interactionregiono, (N5™) (Nl (NuL,) (NuL))

trk trk= trk= k>
13TeV 63 35mm 718 9 4 50
14TevV 150 42 mm 1674 22 9 119
14TeV 200 42 mm 2227 28 12 160
14TeV 250 42 mm 2771 35 16 199

4 Features of simulated data

The number of truth tracks in the detector acceptance in the simulated vertices and the position
measurement errors of these tracks are shown in figure 2 for a collision energy of 13 TeV. As can
be seen in figure 2a, in 14% of the cases, the simulated vertices do not have tracks in the detector
acceptance, and in 6.5% of the cases, they have only one track. The number of tracks for all other
vertices is widely spread up to 80.

c = T 3 c  0.2F T =
S 014 — % E E
g a) 1 g 018F b
&L 012 = L 0.a6- E
0.1 . 0.14 -

] 0.12 E

0.08 — £ ]

] 0.1 E

0.061— - 0.08F E
0.04- E 0.065- E

B E 0.04F- E

0.021 E 0.02F 3

ot . P . | ot e : . B

0 20 40 60 80 0 0.5 1 15 2
Number of tracks in a truth vertex Track Z position measurement error (mm)

Figure 2. a) Number of tracks per simulated vertex and b) longitudinal position measurement errors for
simulated tracks at a collision energy of 13 TeV.

Track measurement errors are shown in figure 2b. From the sizes of the luminous regions and
the number of vertices in table 1 we can conclude that the track measurement errors are comparable
or larger than a typical vertex-vertex distance in the simulated data. Smearing of the track positions
due to measurement errors results in a significant overlap of the tracks from different truth vertices.
This effect can be characterised by the truth track overlap fraction, i.e. the fraction of reconstructed
tracks in an event that are closer in space to another truth vertex than to the truth vertex of origin.
This overlap fraction is shown in table 2 as a function of pileup. An example of the track overlap can
be seen in the bottom panel of figure 1. Another example is shown in figure 3.



Table 2. Average truth track overlap fraction in an event, as a function of pileup conditions.

(w) 63 150 200 250
Truth track overlap fraction 20% 41% 53% 66%

Track error (mm)

=)
III|IIII|IIII|IIII|IIII|IIII|IIII|III

—=— Track positions linked to true vertices —a— True vertices | |
4 6 8 10 12
Track and true vertex positions (mm)

Figure 3. Example display of overlapping tracks from different vertices caused by measurement errors (zoom
of a simulated DELPHES event with ¢ = 150). The crosses at the ordinate value of O represent the track
positions, and the vertical error bars represent the corresponding position measurement errors. Squares at
ordinate values of 1.3 represent the truth vertex positions. The connecting lines show the origin vertex for
every track.

A priori, well-measured tracks with small errors should be easy to cluster according to the
truth, while poorly measured tracks with large errors can easily migrate from one cluster to another,
independently of their true origin. This random migration can be interpreted as noise, and thus, the
overall problem may be considered as clustering in the presence of significant noise.

5 Edge weights and constraints

To formulate the vertex finding problem in the presence of pileup as a minimum cost lifted multicut
(LMC) graph-partitioning problem, a track-pair compatibility graph needs to be constructed. A node
in this graph represents a track, and two nodes are connected by an edge if and only if they are close
in space and can be produced in the same vertex. The degree of track closeness, or equivalently
the probability of originating from the same vertex, is estimated during the graph construction and
is expressed as a weight assigned to the edge. The edge weights determine the efficiency of the
partitioning. Therefore, they should incorporate enough information, and the weight assignment
procedure should be carefully designed. The following approaches are used in our study:

1. Probability density function (PDF) ratio of the track-track geometrical distance significance

based on measured uncertainties, S = \/ (zi —zj)%/ (0'[.2 + 0'12);



2. Multivariate binary classification with Boosted Decision Trees (BDT);
3. Logistic regression based on S.

The LMC formulation assumes that the correct edges (two tracks from the same vertex) receive
positive weights, while random (fake) edges receive negative weights. This can be achieved by using

a logarithm of the ratio of the probability density functions for the correct and fake edges as the cost

Ptrue
. . pfake ' . . . . .

test statistic for the true/fake edge classification. An example of the track-track distance significance

function of the problem log According to the Neyman-Pearson lemma, this is the most efficient
distributions and their ratio are shown in figure 4. As the PDF of the fake edges is independent of
the track-track distance significance, its overall normalisation depends on the significance range used
for the parameterisation. Thus, the exact values of the PDF ratio can be scaled by the choice of the
parametrisation range, which in principle, should not affect the LMC clustering performance if the
range is sufficiently large. Such a behaviour can be mimicked by a global multiplier of the PDF ratio
function. The influence of this multiplier on the clustering will be studied in section 7.3.

0.024g T T T T T e 0.006 T T T T T 5 T T T T T E
0.022 True edges E . Fake edges 4.53\ Ratio True/Fake pdfs 3
0.02 3 0.005F B £ 3
0.018f 3 : E
o.omk 3 0.004F ™ 5F A E
0.014F 3 r 3k 3 E
0.012F 3 0.003f- E 25F E
0.0 3 : of 3
0.008¢ E 0.002 E 1.5F 3
0.006F E [
0.004F 3 0.001- 3 i3 E
0.002F 3 b 05¢ 3
R S B S T AR R S B R I S B B A
Track-track distance significance S Track-track distance significance S Track-track distance significance S

Figure 4. Example track-track distance significance for true and fake edges and their ratio. The significance
distributions are normalized to one.

A better clustering performance could be achieved by encoding more information in the edge
weight calculation. To test this approach, we use a BDT classifier combining seven features, listed in
table 3, to distinguish true edges from fake ones. The GradientBoost implementation (BDTG) from
the TMVA [22] package is used to train the classifier. An example of the trained classifier response?
is shown in figure 5. The output is negative for fake edges and positive for true ones, exactly as
required by the KLj algorithm, and therefore can be used directly as the edge weight.

Edge weights can also be assigned by using the logistic regression p = e*/(e* + 1), where
z = o + 2., Bixi and x; are explanatory variables. The negative inverse of the logistic function,
logit(p) = log[p/(1 — p)], provides the necessary edge weight behaviour. Edges that need to be
removed receive negative weights, and those that need to be preserved receive positive weights. The
intercept value S is defined by the ratio between the amount of true and fake edges used for training,
which can be linked to a prior probability of a given edge being true or fake. In the current problem,
the prior probability depends on the true vertex density and cannot be defined unambiguously, e.g. it

2TMVA GradientBoost uses the binomial log-likelihood loss L(F,y) = In[1 + exp(—2F (x)y)] with Gini Index separa-
tion. We use the following training settings NTree = 800, MaxDepth = 10, MinNodeSize = 1.5%, Shrinkage = 0.07.



Table 3. Input features for the edge classification BDT.

s

Description

Squared significance S? (or y?) of track-track distance along beamline
Average position of the track pair along beamline

Position measurement uncertainty o, of track 1

Position measurement uncertainty o, of track 2

Pseudorapidity n of track 1

Pseudorapidity n of track 2

~N QN AW~

Number of other tracks crossing the beamline between tracks 1 and 2

TMVA response for classifier: BDTG
6 T A R I B I RS AR R

7] Background

(1/N) dN/ dx

§\%\N T RN RN

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

-08 06 -04 -0.2 0 02 04 06 0.8
BDTG response

Figure 5. Example BDTG classification weight distributions for true and fake edges.

depends on the range of the track-track distance significance S, see above. Therefore, the value of the
intercept Sy in this approach can be modified in some range to achieve an over- or undersegmentation
in order to validate its optimality. This will be further discussed in section 7.3. A one-dimensional
regression is tested in this paper, using variable (1) from table 3. The logistic regression for the edge
weight calculation is illustrated in figure 6.

The usage of the track-track distance significance for the graph partitioning does not guarantee
the compactness — the limited size and the absence of overlap with other clusters — of the obtained
track clusters in the Cartesian space, which may be beneficial when the vertex density is large. The
compactness requirement can be imposed using the LMC constraint mechanism. Some edges in the
connectivity graph can be additionally labelled as “have to be cut”, based on a priori information,
different from the edge probability itself. To make track clusters more compact, we can constrain the
edges to be cut if the corresponding Cartesian track-track distance is larger than some scale. In the
following, a rather weak requirement of |z; — z;| < 1 mm will be used, which removes tracks with
very large errors, see figure 2b. In addition to improving the quality of the solution, the constraint
limits the phase space of possible solutions, and this leads to a significant algorithm speedup.
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Figure 6. Example one-variable logistic regression for true (top circles) and fake (bottom circles) edges using
the squared track-track distance significance S2.

6 Performance metrics

For a quantitative assessment of the performance of the vertex-finding algorithm, one or several
metrics are to be established. To compare the performance of the clustering algorithms in, e.g.,
image segmentation problems, metrics are usually employed, which are based on the comparison of
the obtained assignment of the participating objects to clusters with the truth. One example of such
a metric is the Variation of Information (VI) proposed in Reference [23]. The VI metric calculates
the degree of compatibility of a clustering C with another clustering C’ as

VI(C,C')=H(C)+H(C")-2-1(C,C") (6.1)
with
H(C)=- i P(k) -log(P(k)) and I(C,C’) = i i P(k, k") -log (P(k—’k/),) . (6.2)
k=1 k=1 k’=1 P(K)P(K’)

Here P(k) = nx/N, P(k,k’) = |Cr N C;,|/N, ng is the number of nodes in the cluster C, N is
the total number of nodes in the graph, and K and K’ are the number of elements in C and C’,
respectively. In our case, the VI metric can be used to compare the truth track-to-vertex assignment
with the obtained clustering solution. When the obtained set of track clusters and the track-to-cluster
assignment reproduce the truth exactly, VI vanishes. Consequently, smaller VI values correspond to
more truth-like (and therefore better) clustering solutions.
Another track-to-cluster-based metric, which is investigated in the following, is the Silhouette [24]
score . .
(i) - b —al)

" max{a(D).b(0) )
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with

1 Cr 1 Cyr
a(i) = nk——ljzi;jd(l’ﬂ and  b(i) :C?i%kn—]d;d(l,]) (6.4)

for node i in cluster Cr. Here d(i, j) is a distance between nodes i and j. In this study, we use the
Cartesian distance between tracks and average over all tracks silhouette value (s(i)) as a quality
estimator of the clustering solution. The silhouette value is limited —1 < s(i) < 1, larger values
corresponding to more compact clusters, better separated from each other.

Several other metrics for the assessment of the clustering performance can be found in
Reference [23]. These metrics are expected to encounter problems in the present case due to the truth
track overlap, as explained in section 4. Tracks are assigned most probably to the wrong cluster by
any partitioning algorithm if placed in between tracks from other clusters by mismeasurement. This
phenomenon inevitably reduces the accuracy of any track-to-cluster-based metrics. Nevertheless,
at least the clustering of the well-measured tracks should reproduce the truth closely, which the
track-to-cluster metrics can still be sensitive to.

As the metric accuracy is compromised by the presence of tracks with large measurement
errors, it might be useful to downscale the contribution of such tracks to the metric. For the VI
metric this can be achieved by weighting every track with o-~2 in the metric calculations, namely
ng — nk:Zf.;l ﬁ, N —> W =Zf.\:’ 1 ﬁ, etc.. For the Silhouette metric the Cartesian distance
between two tracks can be replaced by its significance d(i, j) = S;;. The weighted versions of the
VI and Silhouette metric will be used in the following, along with the original versions.

The number of reconstructed clusters and the weighted average positions of these clusters,
dominated by the well-measured tracks, are mostly decoupled from the details of the track-to-cluster
assignment. The number of clusters can be directly used as a metric (up to the possible presence of
fake clusters), but a Cartesian distance-based metric is not straightforward. One may try to introduce
such a metric exploiting the cluster-cluster resolution R, i.e. the minimal distance between two
reconstructed clusters, see figure 7. The good, merged, bad cluster categories could be defined based
on whether the cluster-truth vertex distance is smaller or larger than R... Such cluster categories
could be used to compare various clustering solutions. But this categorisation explicitly depends
on R.., which itself depends on the clustering algorithm. To avoid such circular dependence, a
scale-independent Cartesian distance-based metric is needed.

To construct such a metric, we propose the following procedure. Every reconstructable truth
vertex is linked to the closest reconstructed cluster in the Cartesian space that has 2 or more assigned
tracks. Thus, a list of linked reconstructed clusters is obtained. Then, every reconstructed cluster is
classified depending on how many times it enters into this list. If a cluster enters this list only once,
there is just a single truth vertex referencing this cluster. Therefore it can be called unigue, which
means that a truth vertex is unambiguously reconstructed as a cluster. If a cluster enters several times
into the list, it is referenced by several truth vertices, and therefore it combines tracks from these
vertices: this cluster can be called merged. Also, some clusters may not appear in this list at all:
such clusters are not referenced by any truth vertex and are thus fake. The total number of obtained
clusters and their classification as unique, merged, fake are scale-independent and can be used as a
metric to compare various clustering options.
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Figure 7. Example of a fit to the cluster-cluster distance to determine the resolution. The used fitting function
is a/{l +exp[b - (Rqc — |x|)]} + ¢ where a, b, ¢ are free fitting parameters and R is the cluster-cluster
resolution, defined as the half-width at the half-depth of the dip in the centre of the cluster-cluster weighted
centre distances, averaged over all clusters.

7 Results

7.1 LHC Run-2 13 TeV data

First, the LMC clustering algorithm is tested with simulated DELPHES data at a collision energy of
13 TeV, with pileup (u) = 63 and o, = 35 mm. These parameters are chosen to provide simulated
data close to the actual data collected by the ATLAS detector in Run 2. Due to the very small
transverse width of the ATLAS proton-proton interaction region (< 10 pm), this width is neglected
in the simulation, i.e. o, = 0. Edge-weight distributions for various edge-labelling approaches on
these data are shown in figure 8. The performance of the LMC algorithm on these data is shown in
table 4. The rows labelled “cnst” in these tables provide performance estimation with the applied
constraints |z; — z;| < 1 mm, while the “base” rows describe the baseline algorithm performance
without constraints.
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Figure 8. Typical edge weight distributions for various edge labelling options.
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As mentioned above, the primary-vertex reconstruction problem is effectively one-dimensional,
all tracks and vertices being located along the beam-line. In an ideal case, the reconstructed clusters
are strictly separated on this line, i.e. they do not contain tracks assigned to another cluster within
their geometrical borders. However, the LMP clustering is based on the distance significance and
not on the Cartesian distance itself. Thus, a track may be assigned to another cluster nearby. The
column N 7"

trk
surrounded by tracks from another cluster along the line. This number is an estimator of the degree

in table 4 shows the fraction of tracks in an event assigned to a cluster, but entirely

of cluster overlap in the obtained solution. The relevant truth track overlap fraction in the same
events can be found in table 1 for comparison. The truth track overlap fraction characterises the
initial complexity of the event, while the cluster overlap fraction characterises the quality of the
obtained solution. In addition, table 9 in the appendix gives the number of isolated nodes (tracks)
reported by the LMC clustering algorithm. These non-assigned tracks do not represent the one-track
truth vertices, considered non-reconstructable without a priori information, but rather reflect the
clustering problems.

Table 4. LMC performance for the collision energy 13 TeV, pileup 63 and interaction region width o, = 35 mm.
These simulation parameters are chosen to match the full ATLAS simulation for Run 2 results used for
comparison. The column N:rvliong shows the fraction of tracks wrongly associated by the clustering algorithm,
which can be compared to the truth track overlap fraction of 20% (table 2).

Edge weight Vi VI Silhouette Silhouette Unique Merged Fake N, = CPU
weighted weighted

PDF rat base | 0.839  0.407 0.615 0.646 33.3 8.2 24 15% 0.25s
ratio

cnst | 0.782  0.362 0.649 0.660 33.9 7.9 2.3 8%  0.18s

~ base |0.860 0416 0.589 0.623 34.7 7.6 41 14% 0.27s
Regression

cnst [ 0.829  0.387 0.614 0.633 35.0 7.5 39 8% 0.18s

BDT base | 0.945 0.399 0.478 0.230 35.0 75 7.1 5% 0.23s

cnst | 0.937 0.377 0.487 0.234 35.2 7.4 70 4% 0.14s

The PDF ratio and the regression-based edge weight assignment result in approximately equal
clustering performance. The BDT-based edge weight assignment leads to a significantly worse
Silhouette metric value, a smaller value of the cluster overlap and a larger amount of fake clusters.
As expected, the weighted versions of the VI and Silhouette metrics have significantly better values
than the standard ones due to downscaling of the noise. Using constraints uniformly improves all
quality estimators and provides ~ 30% CPU reduction.

In total, 70% of the reconstructable truth vertices are reconstructed as unigue clusters, while
the remaining 30% (i.e. 15) truth vertices are squeezed into 7.5 merged vertices. The amount of
fake clusters is in the range of 5-15%. The number of tracks in the different cluster categories is
presented in figure 9. The number of tracks in the unigue clusters is close to the track amount in
the truth vertices, see figure 2, while the merged clusters contain much more tracks. Finally, fake
clusters have a very small number of tracks.
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Figure 9. Number of tracks in a cluster for the unique, merged and fake cluster categories. The distributions
are obtained for pileup (u) = 63 data using a one-variable logistic regression for the edge weight assignment.

7.2 High-Luminosity LHC 14 TeV data

The High Luminosity LHC (HL-LHC) project foresees a significant increase in interaction rates to
collect significantly more data and thus increase the sensitivity for new physics. The exact parameters
of the upgraded HL-LHC are not yet final; pileup values of 150, 200, and 250, and an interaction
region width of o, = 42 mm [19] are considered in this paper. These options result in an increase
in the density of pileup interaction vertices up to a factor of 4, as compared to the current LHC
parameters. The truth track overlap fraction rises from 20% to 66%, see table 1. It is interesting to
check the performance of the LMC problem formulation in such extreme conditions.

For this test, the same PDF ratio and logistic regression function are used for the edge weight
calculation, while the BDT classification is retrained using u = 150, 200, 250 data. Results for
nominal PDF ratio and logistic regression-based edge weight calculation functions are shown in
tables 5, 6, and 7.

Table 5. LMC performance for pileup ¢ = 150 in an HL-LHC environment with collision energy 14 TeV and

interaction region size o, = 42mm. The column N, *"® shows the fraction of the tracks, wrongly associated

by the clustering algorithm, which can be compared to the truth track overlap fraction 41% (table 2).

Edge weight VI VI Silhouette Silhouette Unique Merged Fake N, "¢ CPU
weighted weighted
PDF rafi base | 1.318  0.690 0.535 0.577 57.7 274 48 28% 1.1s
rati

ate cnst | 1.211  0.612 0.581 0.609 594 269 41 14% 0.42s

. base|1.316 0.682 0.514 0.559 63.0 256 88 26% 0.73s
Regression

cnst | 1.259  0.634 0.546 0.582 63.6 254 82 14% 0.50s

BDOT base | 1.303  0.658 0.394 0.146 61.8 259 13 9%  0.96s

cnst | 1.275  0.616 0.409 0.155 62.8 25.6 12 7%  0.43s

Similarly to the u = 63 results, the BDT-based edge weight assignment leads to a significantly
worse Silhouette metric value, a much smaller value of the cluster overlap and a larger number of
fake clusters, while the PDF ratio and regression-based edge weight calculation approaches provide
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Table 6. LMC performance for pileup 4 = 200 in an HL-LHC environment with collision energy 14 TeV and
interaction region size o, = 42 mm. The column Ntvrv Eong shows the fraction of the tracks, wrongly associated

by the clustering algorithm, which can be compared to the truth track overlap fraction 53% (table 2).

Edge weight Vi VI Silhouette Silhouette Unique Merged Fake N, "¢ CPU

weighted weighted

base | 1.574 0.852 0.500 0.546 643 403 57 36% 2.3s
cnst | 1.441  0.756 0.552 0.586 66.6 398 48 18% 0.69s

base | 1.546  0.825 0.492 0.539 703 386 90 32% 24s
cnst | 1.470  0.765 0.529 0.568 71.0 384 81 18% 0.69s

base | 1.512  0.805 0.312 0.040 69.9 386 156 13% 1.8s
cnst | 1.479  0.755 0.332 0.051 713 382 150 7% 0.66s

PDF ratio

Regression

BDT

Table 7. LMC performance for pileup ¢ = 250 in an HL-LHC environment with collision energy 14 TeV and
interaction region size o, = 42 mm. The column Ntvrv ]:ong shows the fraction of the tracks, wrongly associated

by the clustering algorithm, which can be compared to the truth track overlap fraction 66% (table 2).

Edge weight VI VI Silhouette Silhouette Unique Merged Fake N, °* CPU
weighted weighted

base | 1.782  0.990 0.477 0.526 68.7 532 64 42% 3.0s

POFIAO st | 1638 0887 0531 0569 710 527 53 20% 17s

base | 1.753  0.961 0.467 0.517 77.1 512 11. 38% 3.2s

Regression st 1672 0.895 0505 0547 778 SLI 99 21% 1.7s

base | 1.691 0.941 0.307 0.040 72.8 524 15, 12% 3.0s

80T cnst | 1.651 0.882 0.330 0.055 745 520 14. 9% 1.2s

similar performances. The weighted versions of the VI and Silhouette metrics have significantly
better values than the standard ones due to downscaling of the noise. The use of constraints
significantly improves all quality estimators and provides ~ 30% CPU reduction.

The number of unambiguously reconstructed unique clusters is 53% (44%, 37%) out of the total
amount of the reconstructable truth vertices for the pileup u = 150 (200, 250). The remaining 56 (90,
125) reconstructable truth vertices are clustered into 25 (40, 52) merged clusters. The correctness of
representation of the initial truth vertices by merged clusters is not granted. Truth vertices with a
large number of tracks might “absorb” vertices with a small number of tracks.

7.3 LMC performance adjustment

As can be seen from tables 47, different edge weight assignment approaches lead to non-coinciding
clustering results. For a practical application of the LMC approach for primary vertex finding in the
LHC experiments, it is important to verify whether a unique optimal clustering solution exists in
this problem and, if so, whether the different LMC cost functions can be tuned to provide the same
clustering. As explained in section 5, parameters of the PDF ratio and regression function for the
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edge weights can be modified to enforce under- or over-segmentation. The PDF ratio function can
be scaled up and down. In the logistic regression function, the intercept term can be shifted by a
constant. The cost function modifications are tried on the u = 150 data. The obtained clustering
results are shown in figure 10 and figure 11.
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Figure 10. PDF ratio cost-based clustering results as a function of the applied scaling.
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Figure 11. Logistic regression cost-based clustering results as a function of the logistic regression intercept
term shift.

In the performed test, the exploited metrics change monotonically depending on the scale factor
for the PDF ratio and the intercept shift for the linear regression function. It doesn’t seem possible
to adjust the PDF ratio and logistic regression parameters so that both approaches provide exactly
the same clustering performances in all used metrics. In addition, the BDTG-based Silhouette and
Silhouette weighted metrics results (see table 5) are not reproducible by any modification of the PDF
ratio and logistic regression cost functions. However, the overall variations of the clustering results
remain limited, which means that the LMC approach performance stays close to optimal in the full
scanned parameter range.
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To conclude, the cost function modification test doesn’t demonstrate the presence of an evident
unique globally optimal clustering solution for the problem in consideration. Three used edge weight
assignment strategies provide different clustering results, which can be additionally changed by
simple modification of the cost functions. Therefore, for a practical application as a primary vertex
finder, an exact LMC formulation should be chosen based on desired physics requirements, e.g.
minimal amount of fake vertices or best vertex-vertex resolution, disregarding the clustering metrics.

7.4 Influence of tracks with large measurement errors

Table 8. Number of selected tracks and the truth track overlap fraction as a function of the track error cut for
1 = 150 data.

Track error cut Ny Truth track overlap

- 1674 41%
0.8 1540 31%
0.6 1444 27%
0.4 1283 22%

As the initial truth track overlap in an event is caused by the track position mismeasurement,
the overlap degree can be reduced by removing the badly measured tracks by cutting on the track
measurement error shown in figure 2b. A moderate decrease in the total amount of tracks due to this
rejection should not significantly affect the overall clustering efficiency as the total amount of tracks
per truth vertex is big enough, see figure 2a. The reduction of the amount of selected tracks and
the truth track overlap fraction due to strongly mismeasured track removal is shown in table 8. The
results of the clustering are shown in figure 12 for the PDF ratio cost function and in figure 13 for
the nominal logistic regression cost function.
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Figure 12. PDF ratio cost-based clustering results as a function of the applied track error cut for the
u = 150 data.

The distance-based metric demonstrates very small changes in the clustering results in a
wide range of the badly measured track admixture and, correspondingly, the initial degree of the
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Figure 13. Logistic regression cost-based clustering results as a function of the applied track error cut for the
1 = 150 data.

vertex overlap. One may conclude that the amount of clusters identified by the LMC algorithm is
largely defined by the tracks with small measurement errors and, therefore, is stable with respect
to significant track noise admixture. Redistribution of the tracks with big errors over the obtained
clusters doesn’t change their amount but evidently strongly affects all track counting-based clustering
metrics. The track weighting does mitigate this effect for the VI metric, its weighted version is
practically independent of the track noise admixture. Surprisingly, the Silhouette metric is only
weakly sensitive to this noise.

7.5 Comparison with the existing approaches

The ATLAS Collaboration used the IVF algorithm [3] to reconstruct the pp collision vertices in
Run 1 and the AMVF algorithm [4] in Run 2 and Run 3. Essential characteristics of a primary-vertex
reconstruction algorithm are the vertex-vertex resolution and the number of reconstructed vertices as
a function of the number of pp interactions. The upper plots in figure 14 present the corresponding
distributions for typical ATLAS data for the AMVF and IVF algorithms. The bottom plots show
the same distributions provided by the LMC algorithm with the PDF-ratio based edge-weight
assignment using DELPHES simulation tuned to the same pileup conditions and track resolutions.
The fast DELPHES simulation lacks some features present in the full ATLAS simulation (fakes,
inefficiencies, non-Gaussian tails, etc.). However, these features are not expected to change the
primary vertex reconstruction results significantly, in particular, due to the highly efficient ATLAS
track reconstruction.

Figure 14 clearly demonstrates that the LMC algorithm outperforms the ATLAS heuristic
algorithms. It provides significantly better vertex-vertex resolution. This naturally leads to a larger
amount of Unique/Matched vertices reconstructed by LMC, while the amount of Merged vertices
remains practically the same. Routine application of the LMC for the primary vertex reconstruction
can provide a significant gain in performance for LHC and future collider experiments.
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Figure 14. The vertex-vertex resolution and the number of reconstructed vertices as a function of the number
of pp interactions for typical ATLAS data. The upper plots are obtained with the ATLAS baseline AMVF [4]
and IVF [3] algorithms. The bottom plots are obtained using the LMC algorithm with the PDF ratio-based
edge weight assignment on DELPHES pu = 63 data. The DELPHES p = 63 simulation is specially tuned to
match the ATLAS data used in [4]. The cluster-cluster resolution for the LMC algorithm on the bottom left
picture is obtained as described in section 6.

8 Conclusion

In this work, we have addressed a typical particle physics problem of reconstructing multiple
interaction positions in a dense environment, where each interaction is represented by a cluster of
tracks. Significant track reconstruction errors lead to a large overlap of truth track clusters, which
makes their identification challenging. Heuristic algorithms are usually used to address this problem.
In contrast, we propose to address this problem through a principled formulation as a minimum-cost
lifted multicut problem. We construct several cost functions for the LMC from track-track distances
and their significance. We study the performance of the LMC algorithm for different vertex densities,
cost functions, constraint usage and varying degree of overlap. To address potential performance
problems of existing track counting clustering metrics for strongly overlapped clusters, dedicated
metrics are introduced.

We demonstrate that the LMC approach outperforms the heuristic algorithms in the problem
of vertex reconstruction in dense environments in terms of vertex-vertex resolution and vertex
reconstruction efficiency. It works up to the highest vertex density expected at the HL-HLC project in
spite of the strong truth track overlap reaching ~ 60%. Variations of the LMC algorithm parameters
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and cost functions studied in this work resulted in relatively small variations of the obtained clustering
solutions. The developed metrics and the freedom in the choice of the edge-weight assignment
strategy allow to fine-tune this algorithm to a specific particle-physics experiment.
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A Non-clustered tracks and total reconstructed clusters

In this study, we use four simulated event samples representing realistic proton-proton interactions at
the LHC with different energies and luminosities. The total amounts of interaction vertices with one
reconstructed track and two and more tracks are shown in table 9. Due to the track measurement
errors, the one-track vertices are difficult to reconstruct correctly without a priori information.
Finding two and more track vertices becomes problematic if the vertex-vertex distance is less than
the typical track measurement error. Both problems are illustrated in table 9, where the amounts of
the one-track and multi-track clusters are given for every cost function and event sample.

Table 9. Average numbers of non-clustered tracks and reconstructed clusters obtained by the LMC algorithm
with different cost functions as compared to the truth numbers of single-track and multi-track vertices. Results
are shown for all collision energies and pileup densities.

13 TeV 14 TeV
(u) = 63 (u) =150 (u) =200 () =250

Nuset Moot | Mot Moot | Mamet Mamor | Mot Moo

Truth 4 50 9 119 12 160 16 199
Natier Nusor | Vet Masor | Vet Manor | Vatier Moo

PDF ratio 11 44 19 90 23 110 25 128

Regression 13 46 25 97 27 118 31 139

BDTG 43 50 77 101 102 124 104 140

The number of one-track clusters in each case is significantly larger than the truth amount of
one-track interaction vertices, especially in the BDT case. They should be thought of as non-clustered
tracks, not as reconstructed one-track vertices. The fraction of multi-track clusters found decreases
with the interaction vertex density, as expected.
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