日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

成果報告書

Number it: Temporal Grounding Videos like Flipping Manga

MPS-Authors
/persons/resource/persons275006

Hu,  Xinting
Computer Vision and Machine Learning, MPI for Informatics, Max Planck Society;

/persons/resource/persons45383

Schiele,  Bernt       
Computer Vision and Machine Learning, MPI for Informatics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

arXiv:2411.10332.pdf
(プレプリント), 3MB

付随資料 (公開)
There is no public supplementary material available
引用

Wu, Y., Hu, X., Sun, Y., Zhou, Y., Zhu, W., Rao, F., Schiele, B., & Yang, X. (2024). Number it: Temporal Grounding Videos like Flipping Manga. Retrieved from https://arxiv.org/abs/2411.10332.


引用: https://hdl.handle.net/21.11116/0000-0010-38C2-4
要旨
Video Large Language Models (Vid-LLMs) have made remarkable advancements in
comprehending video content for QA dialogue. However, they struggle to extend
this visual understanding to tasks requiring precise temporal localization,
known as Video Temporal Grounding (VTG). To address this gap, we introduce
Number-Prompt (NumPro), a novel method that empowers Vid-LLMs to bridge visual
comprehension with temporal grounding by adding unique numerical identifiers to
each video frame. Treating a video as a sequence of numbered frame images,
NumPro transforms VTG into an intuitive process: flipping through manga panels
in sequence. This allows Vid-LLMs to "read" event timelines, accurately linking
visual content with corresponding temporal information. Our experiments
demonstrate that NumPro significantly boosts VTG performance of top-tier
Vid-LLMs without additional computational cost. Furthermore, fine-tuning on a
NumPro-enhanced dataset defines a new state-of-the-art for VTG, surpassing
previous top-performing methods by up to 6.9\% in mIoU for moment retrieval and
8.5\% in mAP for highlight detection. The code will be available at
https://github.com/yongliang-wu/NumPro.