Journal Article PreJuSER-4844

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A multi-model assessment of pollution transport to the Arctic

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2008
EGU Katlenburg-Lindau

Atmospheric chemistry and physics 8, 5353 - 5372 ()

This record in other databases:

Please use a persistent id in citations:

Abstract: We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe. East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but East Asian emissions become progressively more important with altitude, and arc dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute similar to 40% of total BC deposition to Greenland, with similar to 20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physical and chemical processing, (including removal). Comparison of modeled aerosol concentrations with observations indicates problems in the models, and perhaps, interpretation of the measurements. For gas phase pollutants such as CO and O-3, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region and altitude examined. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions. and oxidation are comparable for European and North American sources. At higher levels. model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity, though transport also contributes substantially in the mid-troposphere.

Keyword(s): J


Note: We thank the NASA Atmospheric Chemistry Modeling and Analysis Program for support, and D. Henze for comments. MGS and KJP were funded by the UK Defra under contract AQ0409, and were also supported by the Joint Defra and MoD programme, (Defra) GA01 101 (MoD) CBC/2B/0417-Annex C5. This work was perfomed under the umbrella of the Task Force - Hemispheric Transport of Air Pollution (www.htap.org).

Research Program(s):
  1. Atmosphäre und Klima (P22)

Appears in the scientific report 2008
Notes: Nachtrag
Database coverage:
Creative Commons Attribution CC BY 3.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IEK > IEK-8
Workflow collections > Public records
Publications database
Open Access

 Record created 2012-11-13, last modified 2020-04-23