Journal Article FZJ-2017-04201

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Magnon dispersion in Ca2Ru1−xTixO4: Impact of spin-orbit coupling and oxygen moments

 ;  ;  ;  ;  ;  ;  ;  ;

2017
Inst. Woodbury, NY

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The magnon dispersion of Ca2RuO4 has been studied by polarized and unpolarized neutron scattering experiments on crystals containing 0, 1, and 10% of Ti. Ti is inserted in order to enable the growth of large, partially detwinned crystals. One percent of Ti has a negligible impact on structural and magnetic properties. Also for 10% Ti content magnetic properties still change very little, but the insulating phase is stabilized up to at least 700 K and structural distortions are reduced. The full dispersion of transverse magnons studied for 1% Ti substitution can be well described by a conventional spin-wave model with interaction and anisotropy parameters that agree with density functional theory calculations. Spin-orbit coupling strongly influences the magnetic excitations, as it is most visible in large energies of the magnetic zone-center modes arising from magnetic anisotropy. Additional modes appear at low energy near the antiferromagnetic zone center and can be explained by a sizable magnetic moment of 0.11 Bohr magnetons, which the density functional theory calculations find located on the apical oxygens. The energy and the signal strength of the additional branch are well described by taking into account this oxygen moment with weak ferromagnetic coupling to the Ru moments.

Classification:

Contributing Institute(s):
  1. Streumethoden (JCNS-2)
  2. Streumethoden (PGI-4)
  3. JARA-FIT (JARA-FIT)
  4. JCNS-ILL (JCNS-ILL)
Research Program(s):
  1. 144 - Controlling Collective States (POF3-144) (POF3-144)
  2. 524 - Controlling Collective States (POF3-524) (POF3-524)
  3. 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621) (POF3-621)
  4. 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621) (POF3-621)
  5. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
Experiment(s):
  1. ILL-IN12: Cold neutron 3-axis spectrometer

Appears in the scientific report 2017
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > JCNS > JCNS-ILL
Institute Collections > JCNS > JCNS-2
JARA > JARA > JARA-JARA\-FIT
Institute Collections > PGI > PGI-4
Workflow collections > Public records
Publications database
Open Access

 Record created 2017-06-22, last modified 2023-04-26