Journal Article FZJ-2017-06421

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
All-inkjet-printed gold microelectrode arrays for extracellular recording of action potentials

 ;  ;  ;  ;  ;  ;

2017
IOP Publ. Bristol

Physics world 2(3), 035003 - () [10.1088/2058-8585/aa7928]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Inkjet printing is an attractive method for cost-effective additive manufacturing of electronic devices. Especially for applications where disposable sensor systems are of interest, it is a promising tool since it enables the production of low-cost and flexible devices. In this work, we report the fabrication of a disposable microelectrode array (MEA) using solely inkjet printing technology. The MEAs were fabricated with two different functional inks, a self-made gold ink to print conductive feedlines and electrodes and a polymer-based ink to add a dielectric layer for insulation of the feedlines. We printed different MEA designs of up to 64 electrodes with a minimum lateral spacing of 200 μm and a minimum electrode diameter of ~31 μm. As a proof-of-concept, extracellular recordings of action potentials from cardiomyocyte-like HL-1 cells were performed using the all-printed devices. Furthermore, we stimulated the cells during the recordings with noradrenaline, which led to an increase in the recorded beating frequency of the cells. The results demonstrate the feasibility of inkjet printing gold MEAs for cell-based bioelectronics.

Classification:

Contributing Institute(s):
  1. Bioelektronik (ICS-8)
Research Program(s):
  1. 552 - Engineering Cell Function (POF3-552) (POF3-552)

Appears in the scientific report 2017
Database coverage:
OpenAccess ; Current Contents - Physical, Chemical and Earth Sciences ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-3
Workflow collections > Public records
ICS > ICS-8
Publications database
Open Access

 Record created 2017-09-07, last modified 2021-01-29