Journal Article FZJ-2018-07539

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Improvement of accuracy in the wave-function-matching method for transport calculations

 ;  ;

2018
Inst. Woodbury, NY

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: The wave-function-matching (WFM) technique for first-principles transport-property calculations was bettered by Sørensen et al. so as to exclude rapidly decreasing evanescent waves [Sørensen et al., Phys. Rev. B 77, 155301 (2008)]. In their method, the translational invariance of the transmission probability is not preserved when moving the matching planes between electrode and transition regions, and the sum of transmission and reflection probabilities does not agree with the number of transport channels in the transition region. The lack of the translational invariance is caused by the overlap of the layers between the electrode and transition regions. We reformulate the WFM method by removing the layer overlap, and the translational invariance of the transmission probability becomes preserved. On the other hand, the error in the sum of transmission and reflection probabilities is attributed to using pseudoinverses that is accompanied by the exclusion of rapidly decreasing evanescent waves. We introduce a formulation to calculate the transmission/reflection probability without the pseudoinverses, resulting in that the sum of the transmission and reflection probabilities exactly agrees with the number of channels, and the accuracy is largely improved. In addition, we prove that the accuracy in the transmission probability obtained by our WFM technique is comparable to that obtained by a nonequilibrium Green's function method. Furthermore, we carry out electron transport calculations on two-dimensional graphene sheets embedded with B-N line defects sandwiched between a pair of semi-infinite graphene electrodes and find the dependence of the electron transmission on the transverse momentum perpendicular to the transport direction.

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. JARA-FIT (JARA-FIT)
  4. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 142 - Controlling Spin-Based Phenomena (POF3-142) (POF3-142)
  2. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)
  3. Hybrid 2D-based interfaces from first principles (jias1e_20180501) (jias1e_20180501)

Appears in the scientific report 2018
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-HPC
JARA > JARA > JARA-JARA\-FIT
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2018-12-18, last modified 2023-04-26