Journal Article FZJ-2019-00068

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Diattenuation Imaging reveals different brain tissue properties

 ;  ;  ;  ;

2019
Macmillan Publishers Limited, part of Springer Nature [London]

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: When transmitting polarised light through histological brain sections, different types of diattenuation (polarisation-dependent attenuation of light) can be observed: In some brain regions, the light is minimally attenuated when it is polarised parallel to the nerve fibres (referred to as D+), in others, it is maximally attenuated (referred to as D-). The underlying mechanisms of these effects and their relationship to tissue properties were so far unknown. Here, we demonstrate in experimental studies that diattenuation of both types D+ and D- can be observed in brain tissue samples from different species (rodent, monkey, and human) and that the strength and type of diattenuation depend on the nerve fibre orientations. By combining finite-difference time-domain simulations and analytical modelling, we explain the observed diattenuation effects and show that they are caused both by anisotropic absorption (dichroism) and by anisotropic light scattering. Our studies demonstrate that the diattenuation signal depends not only on the nerve fibre orientations but also on other brain tissue properties like tissue homogeneity, fibre size, and myelin sheath thickness. This allows to use the diattenuation signal to distinguish between brain regions with different tissue properties and establishes Diattenuation Imaging as a valuable imaging technique.

Classification:

Contributing Institute(s):
  1. Strukturelle und funktionelle Organisation des Gehirns (INM-1)
  2. Jülich Supercomputing Center (JSC)
  3. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 574 - Theory, modelling and simulation (POF3-574) (POF3-574)
  2. 511 - Computational Science and Mathematical Methods (POF3-511) (POF3-511)
  3. SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) (HGF-SMHB-2013-2017)
  4. HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) (720270)
  5. SIMULATIONS FOR THE RECONSTRUCTION OF NERVE FIBERS BY 3D POLARIZED LIGHT IMAGING (jjsc24_20150501) (jjsc24_20150501)
  6. HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) (785907)
  7. Simulations for a better Understanding of the Impact of Different Brain Tissue Components on 3D Polarized Light Imaging (jjsc43_20181101) (jjsc43_20181101)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-HPC
Institute Collections > INM > INM-1
Workflow collections > Public records
Workflow collections > Publication Charges
Institute Collections > JSC
Publications database
Open Access

 Record created 2019-01-07, last modified 2022-09-30