Journal Article FZJ-2019-03965

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Electron-magnon scattering in elementary ferromagnets from first principles: Lifetime broadening and band anomalies

 ;  ;

2019
Inst. Woodbury, NY

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: We study the electron-magnon scattering in bulk Fe, Co, and Ni within the framework of many-body perturbation theory implemented in the full-potential linearized augmented-plane-wave method. To this end, a k-dependent self-energy (GT self-energy) describing the scattering of electrons and magnons is constructed from the solution of a Bethe-Salpeter equation for the two-particle (electron-hole) Green function, in which single-particle Stoner and collective spin-wave excitations (magnons) are treated on the same footing. Partial self-consistency is achieved by the alignment of the chemical potentials. The resulting renormalized electronic band structures exhibit strong spin-dependent lifetime effects close to the Fermi energy, which are strongest in Fe. The renormalization can give rise to a loss of quasiparticle character close to the Fermi energy, which we attribute to electron scattering with spatially extended spin waves. This scattering is also responsible for dispersion anomalies in conduction bands of iron and for the formation of satellite bands in nickel. Furthermore, we find a band anomaly at a binding energy of 1.5 eV in iron, which results from a coupling of the quasihole with single-particle excitations that form a peak in the Stoner continuum. This band anomaly was recently observed in photoemission experiments. On the theory side, we show that the contribution of the Goldstone mode to the GT self-energy is expected to (nearly) vanish in the long-wavelength limit. We also present an in-depth discussion about the possible violation of causality when an incomplete subset of self-energy diagrams is chosen

Classification:

Contributing Institute(s):
  1. Quanten-Theorie der Materialien (IAS-1)
  2. Quanten-Theorie der Materialien (PGI-1)
  3. JARA-FIT (JARA-FIT)
  4. JARA - HPC (JARA-HPC)
Research Program(s):
  1. 142 - Controlling Spin-Based Phenomena (POF3-142) (POF3-142)
  2. 143 - Controlling Configuration-Based Phenomena (POF3-143) (POF3-143)
  3. Optoelectronic properties of materials for photovoltaic and photonic applications (jpgi10_20181101) (jpgi10_20181101)

Appears in the scientific report 2019
Database coverage:
Medline ; American Physical Society Transfer of Copyright Agreement ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-HPC
JARA > JARA > JARA-JARA\-FIT
Institute Collections > IAS > IAS-1
Institute Collections > PGI > PGI-1
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-07-23, last modified 2023-04-26