Journal Article FZJ-2019-05538

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Phase stability of the ice XVII-based CO 2 chiral hydrate from molecular dynamics simulations

 ;  ;

2019
American Institute of Physics Melville, NY

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: We computed the phase diagram of CO2 hydrates at high pressure (HP), from 0.3 to 20 kbar, by means of molecular dynamics simulations. The two CO2 hydrates known to occur in this pressure range are the cubic structure I (sI) clathrate and the HP hydrate, whose water framework is the recently discovered ice XVII. We investigated the stability of both hydrates upon heating (melting) as well as the phase changes upon compression. The CO2-filled ice XVII is found to be more stable than the sI clathrate and than the mixture of ice VI and dry ice at pressure values ranging from 6 to 18 kbar and in a wide temperature range, although a phenomenological correction suggests that the stability should more realistically range from 6.5 to 13.5 kbar. Our simulation results support the current hypothesis that the HP hydrate is stable at temperatures above the melting curve of ice VI

Classification:

Contributing Institute(s):
  1. Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien (IEK-11)
Research Program(s):
  1. 121 - Solar cells of the next generation (POF3-121) (POF3-121)

Appears in the scientific report 2019
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; National-Konsortium ; NationallizenzNationallizenz ; PubMed Central ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IEK > IEK-11
Workflow collections > Public records
Publications database
Open Access

 Record created 2019-11-13, last modified 2021-01-30