Journal Article FZJ-2020-03027

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Mechanical properties of BaCe0.65Zr0.2Y0.15O3- proton-conducting material determined using different nanoindentation methods

 ;  ;  ;  ;  ;  ;

2020
Elsevier Science Amsterdam [u.a.]

This record in other databases:  

Please use a persistent id in citations:   doi:

Abstract: Proton-conducting membranes have great potential for applications in proton conducting membrane reactors for the production of commodity chemicals or synthetic fuels as well as for use in solid oxide fuel cells. However, to ensure the long-term structural stability under operation relevant conditions, the mechanical properties of the membrane materials need to be characterized. BaCe0.65Zr0.2Y0.15O3-δ is of particular interest due to its proven functional properties. In this research work, the mechanical properties of BaCe0.65Zr0.2Y0.15O3-δ were determined on different length scales using different methods including impulse excitation, indentation testing, and micro-pillar splitting. A detailed microstructural analysis of pillars revealed that irregular results are caused by pores causing crack deflection and complex crack patterns.

Classification:

Contributing Institute(s):
  1. Werkstoffsynthese und Herstellungsverfahren (IEK-1)
  2. Werkstoffstruktur und -eigenschaften (IEK-2)
  3. JARA-ENERGY (JARA-ENERGY)
Research Program(s):
  1. 113 - Methods and Concepts for Material Development (POF3-113) (POF3-113)

Appears in the scientific report 2020
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; Embargoed OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Engineering, Computing and Technology ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
JARA > JARA > JARA-JARA\-ENERGY
Institute Collections > IEK > IEK-1
Institute Collections > IEK > IEK-2
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-09-01, last modified 2021-01-30


Published on 2020-07-20. Available in OpenAccess from 2022-07-20.:
Download fulltext PDF Download fulltext PDF (PDFA)
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)