Journal Article FZJ-2020-03146

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A long side chain imidazolium-based graft-type anion-exchange membrane: novel electrolyte and alkaline-durable properties and structural elucidation using SANS contrast variation

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2020
Royal Soc. of Chemistry London

Soft matter 16(35), 8128-8143 () [10.1039/D0SM00947D]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: Newly designed styrylimidazolium-based grafted anion-exchange membranes (StIm-AEMs), in which imidazolium ionic groups are attached to styrene at the far side from the graft chains, were prepared by radiation-induced graft polymerization of p-(2-imidazoliumyl) styrene onto poly(ethylene-co-tetrafluoloethylene) (ETFE) films, followed by N-alkylation and ion-exchange reactions. StIm-AEM having an ion exchange capacity (IEC) of 0.54 mmol g−1 with a grafting degree (GD) of ∼18%, possesses practical conductivity (>50 mS cm−1) even with a very low water uptake (∼10%) and high stability over 600 h in a 1 M KOH solution at 80 °C. There exists a critical IEC (IECc) in the range of 0.7–0.8 mmol g−1 over which the membrane showed high water uptake, which resulted in pronounced susceptibility to hydrolysis. Using small-angle neutron scattering technique with a contrast variation method, we found the hydrophilic phase in StIm-AEMs with IECs lower and higher than IECc shows “reverse-micelles” with water domains dispersed in the polymer matrix and “micelles” with graft polymer aggregates dispersed in the water matrix, respectively. The further analysis of micelle structures using the hard-sphere liquid model and Porod limit analysis reveals that the interfacial structures of ionic groups are essential for the electrochemical properties and durability of StIm-AEMs. In addition, StIm-AEM with an IEC of 0.95 mmol g−1 and the maximum power density of 80 mW cm−2 in the hydrazine hydrate fuel cell test, exhibited long-term durability under constant current (8.0 mA) up to 455 h, which, thus far, is the best durability at 80 °C for platinum-free alkaline-type liquid fuel cells.

Keyword(s): Energy (1st) ; Soft Condensed Matter (2nd)

Classification:

Contributing Institute(s):
  1. JCNS-FRM-II (JCNS-FRM-II)
  2. Heinz Maier-Leibnitz Zentrum (MLZ)
Research Program(s):
  1. 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) (POF3-623)
  2. 6G15 - FRM II / MLZ (POF3-6G15) (POF3-6G15)
Experiment(s):
  1. KWS-2: Small angle scattering diffractometer (NL3ao)

Appears in the scientific report 2020
Database coverage:
Medline ; Embargoed OpenAccess ; Allianz-Lizenz / DFG ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; NCBI Molecular Biology Database ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Institute Collections > JCNS > JCNS-FRM-II
Document types > Articles > Journal Article
Workflow collections > Public records
Publications database
Open Access

 Record created 2020-09-16, last modified 2021-04-01


Published on 2020-07-29. Available in OpenAccess from 2021-07-29.:
Download fulltext PDF
External link:
Download fulltextFulltext by OpenAccess repository
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)