Journal Article FZJ-2021-03069

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Effect of malaria parasite shape on its alignment at erythrocyte membrane

 ;  ;  ;

2021
eLife Sciences Publications Cambridge

eLife 10, e68818 () [10.7554/eLife.68818]

This record in other databases:      

Please use a persistent id in citations:   doi:

Abstract: During the blood stage of malaria pathogenesis, parasites invade healthy red blood cells (RBC) to multiply inside the host and evade the immune response. When attached to RBC, the parasite first has to align its apex with the membrane for a successful invasion. Since the parasite's apex sits at the pointed end of an oval (egg-like) shape with a large local curvature, apical alignment is in general an energetically un-favorable process. Previously, using coarse-grained mesoscopic simulations, we have shown that optimal alignment time is achieved due to RBC membrane deformation and the stochastic nature of bond-based interactions between the parasite and RBC membrane (Hillringhaus et al., 2020). Here, we demonstrate that the parasite's shape has a prominent effect on the alignment process. The alignment times of spherical parasites for intermediate and large bond off-rates (or weak membrane-parasite interactions) are found to be close to those of an egg-like shape. However, for small bond off-rates (or strong adhesion and large membrane deformations), the alignment time for a spherical shape increases drastically. Parasite shapes with large aspect ratios such as oblate and long prolate ellipsoids are found to exhibit very long alignment times in comparison to the egg-like shape. At a stiffened RBC, spherical parasite aligns faster than any other investigated shapes. This study shows that the original egg-like shape performs not worse for parasite alignment than other considered shapes, but is more robust with respect to different adhesion interactions and RBC membrane rigidities.

Classification:

Contributing Institute(s):
  1. Theoretische Physik der Lebenden Materie (IBI-5)
Research Program(s):
  1. 5243 - Information Processing in Distributed Systems (POF4-524) (POF4-524)

Appears in the scientific report 2021
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; DOAJ ; OpenAccess ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; PubMed Central ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBI > IBI-5
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2021-07-26, last modified 2022-09-30