Journal Article FZJ-2022-01672

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Enzymatic Cascade in a Simultaneous, One-Pot Approach with In Situ Product Separation for the Asymmetric Production of (4 S ,5 S )-Octanediol

 ;  ;  ;  ;

2022
ACS Publ. Washington, DC

This record in other databases:    

Please use a persistent id in citations:   doi:

Abstract: Stereopure aliphatic diols are an interesting class of compounds because of their potential applications as precursors for chemical catalysts, for high-value polymers, or as precursors for cyclic acetals. We present a simultaneous enzymatic two-step, one-pot cascade for the synthesis of vicinal diols with excellent de and ee values with the exemplary reaction system from butanal to (4S,5S)-octanediol. This reaction is restricted by an unfavorable reaction equilibrium. For an intensification of the reaction toward higher conversions in equilibrium and increased space time yields (STY), aqueous, microaqueous, and biphasic reaction systems for in situ product removal (ISPR) were experimentally investigated and compared. Process concepts for the purification of (4S,5S)-octanediol from each reaction system were developed and assessed in terms of product-specific energy demand. The two-phase reaction system for in situ product removal is favorable for the enzymatic reactions in terms of yield and STY at different time points. In comparison to the aqueous and microaqueous reaction systems, the specific energy demand for (4S,5S)-octanediol recovery is drastically reduced by approximately a factor of seven when performing ISPR using a biphasic system in comparison to an aqueous reaction system.

Classification:

Contributing Institute(s):
  1. Biotechnologie (IBG-1)
Research Program(s):
  1. 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217) (POF4-217)
  2. DFG project 491111487 - Open-Access-Publikationskosten / 2022 - 2024 / Forschungszentrum Jülich (OAPKFZJ) (491111487) (491111487)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 ; OpenAccess ; Chemical Reactions ; Clarivate Analytics Master Journal List ; Current Contents - Physical, Chemical and Earth Sciences ; Essential Science Indicators ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > IBG > IBG-1
Workflow collections > Public records
Workflow collections > Publication Charges
Publications database
Open Access

 Record created 2022-03-17, last modified 2023-07-19