Design techniques for low-power SAR ADCs in nano-scale CMOS technologies

Date

2016-05

Authors

Chen, Long

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This thesis presents low power design techniques for successive approximation register (SAR) analog-to-digital converters (ADCs) in nano-scale CMOS technologies. Low power SAR ADCs face two major challenges especially at high resolutions: (1) increased comparator power to suppress the noise, and (2) increased DAC switching energy due to the large DAC size. To improve the comparator’s power efficiency, a statistical estimation based comparator noise reduction technique is presented. It allows a low power and noisy comparator to achieve high signal-to-noise ratio (SNR) by estimating the conversion residue. A first prototype ADC in 65nm CMOS has been developed to validate the proposed noise reduction technique. It achieves 4.5 fJ/conv-step Walden figure of merit and 64.5 dB signal-to-noise and distortion ratio (SNDR). In addition, a bidirectional single-side switching technique is developed to reduce the DAC switching power. It can reduce the DAC switching power and the total number of unit capacitors by 86% and 75%, respectively. A second prototype ADC with the proposed switching technique is designed and fabricated in 180nm CMOS technology. It achieves an SNDR of 63.4 dB and consumes only 24 Wat 1MS/s, leading to aWalden figure of merit of 19.9 fJ/conv-step. This thesis also presents an improved loop-unrolled SAR ADC, which works at high frequency with reduced SAR logic power and delay. It employs the bidirectional single-side switching technique to reduce the comparator common-mode voltage variation. In addition, it uses a Vcm-adaptive offset calibration technique which can accurately calibrate comparator’s offset at its operating Vcm. A prototype ADC designed in 40nm CMOS achieves 35 dB at 700 MS/s sampling rate and consumes only 0.95 mW, leading to a Walden figure of merit of 30 fJ/conv-step.

Description

LCSH Subject Headings

Citation