A comparative study of entrainment in supersonic beams

Date

2016-08

Authors

Burkhardt, Karl Austin

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In the field of atomic physics, there is a growing demand for large numbers of dense, trapped atoms. The traditional method of generating trapped atoms is through laser cooling, however the field has reached saturation in terms of cold atom flux and phase-space density and is fundamentally limited to atoms that can be addressed using a two-level transition accessible with available lasers. Because of this a new, more general technique of generating dense clouds of trapped atoms is necessary. This technique will surpass laser cooling with higher cold atom flux and phase-space density, as well as be applicable to particles which cannot be put into a two-level system. This thesis explores the first step necessary for the generation of a new method of cooling which will be more general than laser cooling and will produce a higher cold atom flux in denser phase-space. This method of cooling will rely on the sympathetic cooling of vaporized particles with a pulsed supersonic beam before slowing the entrained particles to rest using magnetic fields. Because the cooling in the entrainment step relies on sympathetic cooling, there is no two-level requirement and thus it is applicable to all paramagnetic species including both atoms and molecules. The experiments outlined in this thesis focus on utilizing different methods of entraining vaporized atoms into a supersonic beam as an alternative method of generating cold atoms. A comprehensive comparison of entrainment efficiency using these different entrainment techniques is included as well as a discussion regarding future applications of this new cooling process.

Department

Description

LCSH Subject Headings

Citation