The effect of cemented natural fractures on hydraulic fracture propagation

Date

2017-08

Authors

Wang, Weiwei

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Microseismic events, which are generated during hydraulic fracturing treatments, suggest that a complicated fracture network develops in many naturally−fractured unconventional reservoirs. Deformation along weak planes, such as cemented natural fractures, has been proposed as one of the possible reasons for fracture network complexity. Cemented natural fractures widely exist in shale reservoirs. They are diverse in composition and size, depending on the burial condition, the composition of the rock matrix, and the geochemical environment. The interaction between cemented natural fractures with hydraulic fractures generated as part of the reservoir stimulation are thought to impact hydraulic fracture propagation. Previous studies mostly treated natural fractures as frictional interfaces without considering the actual cement fillings. In this study, I analyzed the effect of cemented natural fractures on hydraulic fracture propagation by considering natural fracture thickness, mechanical properties and rock−cement interface bond strength. Firstly, I conducted a series of semi−circular bend (SCB) tests and corresponding numerical simulations to study the interaction between hydraulic and natural fractures. The SCB tests are attractive in general because of their simple setup with consistent results. The experimental results also served as a validation for numerical model. Two drawbacks of the SCB tests include that the test is unconfined and there is no fluid component. Numerical modeling can then be applied to extend results beyond these shortcomings. Synthetic hydrostone samples with embedded inclusions of different mechanical properties were used to mimic rock with cemented natural fractures. Experimental results identified several parameters that could be used to explain hydraulic fractures interaction with cemented natural fractures. The SCB test conditions that promoted fracture crossing were near−orthogonal approach angles, small natural fracture thicknesses, and strong rock−cement interfaces. Such conditions in a reservoir would promote long hydraulic fractures and less complicated fracture networks. In contrast, the SCB test conditions that caused fracture diverting were more oblique approach angles, large natural fracture thicknesses, and weak rock−cement interfaces, resulting in short hydraulic fractures and more complicated fracture networks. The SCB tests using synthetic rock samples provided insights into the hydraulic fracture propagation in naturally−fractured reservoirs. Through the numerical modeling with the finite element code in Abaqus, the impact of fluid driven fracturing on fracture−fracture interaction was investigated. Fracture propagation in two dimensions was modeled using the cohesive elements and anisotropic compressive remote stress conditions. Results suggest that if the natural fracture thickness is considered, the commonly used fracture crossing/diverting criterion will overestimate the hydraulic fracture crossing scenario. Factors including modulus contrast and coefficient of friction also influence hydraulic fracture interaction with natural fractures. An application of this work is the case of how bedding−parallel veins will affect hydraulic fracture height growth. Such natural fractures are abundant in the unconventional resource play in the Vaca Muerta formation in Argentina. When the rock−cement coefficient of friction is around 0.4−0.5, which most likely represents shale reservoirs, hydraulic fracture crossing behavior is affected by the modulus contrast between natural fractures and host rock as well as the natural fracture thickness.

Description

LCSH Subject Headings

Citation