An experimental and simulation study of the effect of geochemical reactions on chemical flooding

Access full-text files

Date

2010-12

Authors

Chandrasekar, Vikram, 1984-

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The overall objective of this research was to gain an insight into the challenges encountered during chemical flooding under high hardness conditions. Different aspects of this problem were studied using a combination of laboratory experiments and simulation studies. Chemical Flooding is an important Enhanced Oil Recovery process. One of the major components of the operational expenses of any chemical flooding project, especially Alkali Surfactant Polymer (ASP) flooding is the cost of softening the injection brine to prevent the precipitation of the carbonates of the calcium and magnesium ions which are invariably present in the formation brine. Novel hardness tolerant alkalis like sodium metaborate have been shown to perform well with brines of high salinity and hardness, thereby eliminating the need to soften the injection brine. The first part of this research was aimed at designing an optimal chemical flooding formulation for a reservoir having hard formation brine. Sodium metaborate was used as the alkali in the formulation with the hard brine. Under the experimental conditions, sodium metaborate was found to be inadequate in preventing precipitation in the ASP slug. Factors affecting the ability of sodium metaborate to sequester divalent ions, including its potential limitations under the experimental conditions were studied. The second part of this research studied the factors affecting the ability of novel alkali and chelating agents like sodium metaborate and tetrasodium EDTA to sequester divalent ions. Recent studies have shown that both these chemicals showed good performance in sequestering divalent ions under high hardness conditions. A study of the geochemical species in solution under different conditions was done using the computer program PHREEQC. Sensitivity studies about the effect of the presence of different solution species on the performance of these alkalis were done. The third part of this research focused on field scale mechanistic simulation studies of geochemical scaling during ASP flooding. This is one of the major challenges faced by the oil and gas industry and has been found to occur when sodium carbonate is used as the alkali and the formation brine present in situ has a sufficiently high hardness content. The multicomponent and multiphase compositional chemical flooding simulator, UTCHEM was used to determine the quantity and composition of the scales formed in the reservoir as well as the injection and production wells. Reactions occurring between the injected fluids, in situ fluids and the reservoir rocks were taken into consideration for this study. Sensitivity studies of the effect of key reservoir and process parameters like the physical dispersion and the alkali concentration on the extent of scaling were also done as a part of this study.

Description

text

LCSH Subject Headings

Citation