We examine the impact of torpid mixing and meta-stability issues on the delay performance in wireless random-access networks. Focusing on regular meshes as prototypical scenarios, we show that the mean delays in an L×L toric grid with normalized load ρ are of the order View the MathML source. This superlinear delay scaling is to be contrasted with the usual linear growth of the order View the MathML source in conventional queueing networks. The intuitive explanation for the poor delay characteristics is that (i) high load requires a high activity factor, (ii) a high activity factor implies extremely slow transitions between dominant activity states, and (iii) slow transitions cause starvation and hence excessively long queues and delays. Our proof method combines both renewal and conductance arguments. A critical ingredient in quantifying the long transition times is the derivation of the communication height of the uniformized Markov chain associated with the activity process. We also discuss connections with Glauber dynamics, conductance, and mixing times. Our proof framework can be applied to other topologies as well, and is also relevant for the hard-core model in statistical physics and sampling from independent sets using single-site update Markov chains.

Delay performance in random-access grid networks / Zocca, A; Borst, S.C.; Van Leeuwaarden, J.S.H.; Nardi, F.R.. - In: PERFORMANCE EVALUATION. - ISSN 0166-5316. - STAMPA. - 70:(2013), pp. 900-915. [10.1016/j.peva.2013.08.019]

Delay performance in random-access grid networks

NARDI, FRANCESCA ROMANA
2013

Abstract

We examine the impact of torpid mixing and meta-stability issues on the delay performance in wireless random-access networks. Focusing on regular meshes as prototypical scenarios, we show that the mean delays in an L×L toric grid with normalized load ρ are of the order View the MathML source. This superlinear delay scaling is to be contrasted with the usual linear growth of the order View the MathML source in conventional queueing networks. The intuitive explanation for the poor delay characteristics is that (i) high load requires a high activity factor, (ii) a high activity factor implies extremely slow transitions between dominant activity states, and (iii) slow transitions cause starvation and hence excessively long queues and delays. Our proof method combines both renewal and conductance arguments. A critical ingredient in quantifying the long transition times is the derivation of the communication height of the uniformized Markov chain associated with the activity process. We also discuss connections with Glauber dynamics, conductance, and mixing times. Our proof framework can be applied to other topologies as well, and is also relevant for the hard-core model in statistical physics and sampling from independent sets using single-site update Markov chains.
2013
70
900
915
Zocca, A; Borst, S.C.; Van Leeuwaarden, J.S.H.; Nardi, F.R.
File in questo prodotto:
File Dimensione Formato  
BLNZ2013.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 634.34 kB
Formato Adobe PDF
634.34 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1078666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact