ログイン
言語:

WEKO3

  • トップ
  • ランキング
To

Field does not validate

To

Field does not validate

To
lat lon distance


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. B. 理工学域; 数物科学類・物質化学類・機械工学類・フロンティア工学類・電子情報通信学類・地球社会基盤学類・生命理工学類
  2. b 10. 学術雑誌掲載論文
  3. 1.査読済論文(工)

Asymptotically Optimal Online Page Migration on Three Points

http://hdl.handle.net/2297/36497
http://hdl.handle.net/2297/36497
2cf8d563-53b0-4cd2-a25d-eff757b99140
名前 / ファイル ライセンス アクション
TE-PR-MATSUBAYASHI-A-1035.pdf TE-PR-MATSUBAYASHI-A-1035.pdf (226.1 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2017-10-03
タイトル
タイトル Asymptotically Optimal Online Page Migration on Three Points
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者 Matsubayashi, Akira

× Matsubayashi, Akira

WEKO 614
金沢大学研究者情報 10282378
研究者番号 10282378

Matsubayashi, Akira

Search repository
書誌情報 Algorithmica

巻 71, 号 4, p. 1035-1064, 発行日 2015-01-01
ISSN
収録物識別子タイプ ISSN
収録物識別子 0178-4617
NCID
収録物識別子タイプ NCID
収録物識別子 AA10679010
DOI
関連タイプ isVersionOf
識別子タイプ DOI
関連識別子 10.1007/s00453-013-9841-9
出版者
出版者 Springer Science+Business Media
抄録
内容記述タイプ Abstract
内容記述 This paper addresses the page migration problem: given online requests from nodes on a network for accessing a page stored in a node, output online migrations of the page. Serving a request costs the distance between the request and the page, and migrating the page costs the migration distance multiplied by the page size D≥1. The objective is to minimize the total sum of service costs and migration costs. Black and Sleator conjectured that there exists a 3-competitive deterministic algorithm for every graph. Although the conjecture was disproved for the case D=1, whether or not an asymptotically (with respect to D) 3-competitive deterministic algorithm exists for every graph is still open. In fact, we did not know if there exists a 3-competitive deterministic algorithm for an extreme case of three nodes with D≥2. As the first step toward an asymptotic version of the Black and Sleator conjecture, we present 3- and (3+1/D)-competitive algorithms on three nodes with D=2 and D≥3, respectively, and a lower bound of 3+Ω(1/D) that is greater than 3 for every D≥3. In addition to the results on three nodes, we also derive ρ-competitiveness on complete graphs with edge-weights between 1 and 2-2/ρ for any ρ≥3, extending the previous 3-competitive algorithm on uniform networks. © 2013 Springer Science+Business Media New York.
著者版フラグ
出版タイプ AM
出版タイプResource http://purl.org/coar/version/c_ab4af688f83e57aa
戻る
0
views
See details
Views

Versions

Ver.1 2023-07-28 02:08:01.927327
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3