University of Leicester
Browse
McLennan_Curiosity_Elemental_Geochem_accepted.pdf (2.23 MB)

Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars.

Download (2.23 MB)
journal contribution
posted on 2018-05-09, 09:58 authored by SM McLennan, RB Anderson, JF Bell, John C. Bridges, F Calef, JL Campbell, BC Clark, S Clegg, P Conrad, A Cousin, DJ Des Marais, G Dromart, MD Dyar, LA Edgar, BL Ehlmann, C Fabre, O Forni, O Gasnault, R Gellert, S Gordon, JA Grant, JP Grotzinger, S Gupta, KE Herkenhoff, JA Hurowitz, PL King, S Le Mouélic, LA Leshin, R Léveillé, KW Lewis, N Mangold, S Maurice, DW Ming, RV Morris, M Nachon, HE Newsom, AM Ollila, GM Perrett, MS Rice, ME Schmidt, SP Schwenzer, K Stack, EM Stolper, DY Sumner, AH Treiman, S VanBommel, DT Vaniman, A Vasavada, RC Wiens, RA Yingst, MSL Science Team
Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.

History

Citation

Science, 2014, 343 (6169), 1244734

Author affiliation

/Organisation/COLLEGE OF SCIENCE AND ENGINEERING/Department of Physics and Astronomy

Version

  • AM (Accepted Manuscript)

Published in

Science

issn

0036-8075

eissn

1095-9203

Acceptance date

2013-11-12

Copyright date

2014

Available date

2018-05-09

Publisher version

http://science.sciencemag.org/content/343/6169/1244734

Language

en