UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

The high resolution spectroscopy of manganese oxide Chandrakumar, Thambirajah

Abstract

This thesis reports studies of the electronic spectrum of gaseous MnO. The (0,0) band of the A⁶Σ +-X⁶ Σ+ electronic transition of MnO was recorded by intermodulated laser-induced fluorescence over the range 17770 - 17970 cm⁻¹. The hyperfine structure caused by the ⁵⁵Mn nucleus (I = 5/2) is almost completely resolved. Internal hyperfine perturbations between the F₃ and F₄electron spin components (where N = J - 1/2 and N = J + 1/2, respectively) occur in the ground state of MnO. These are caused by hyperfine matrix elements of the type ΔN = ΔF = 0.ΔJ = ± 1. Extra lines obeying the selection rules ΔJ = 0, ± 2 are also induced. Therefore, [sup P]Q₃₄, [sup R]Q₄₃, [sup P]Q₄₃ and [sup R]S₃₄ branches appear in the spectrum although they are not allowed in parallel transitions. The reason for the great complexity of the spectra is the occurrence of a large avoided crossing near N = 26 in the A⁶Σ + v = 0 level by another electronic state, B⁶Σ +, with the same multiplicity and symmetry. The perturbation between the A⁶Σ + and B⁶Σ + states arises from electrostatic interaction. The selection rules for electrostatic perturbations are ΔJ = ΔS = Δ∧ = ΔΩ = 0. The perturbing state B⁶Σ + state has a considerably longer bond length so that it must come from a "charge transfer transition", possibly by electron transfer either from the 3π to the 4π orbital or from 8σ to 10σ. However, the A⁶Σ + state has only a small bond length change compared to the ground state so that it comes from a "Valence state transition". The Fermi contact constant b was found to be negative for the A⁶Σ + state and this confirms the electronic configuration as being (8σ² 3 π⁴) 1δ² 4 π ² 10σ¹. The ground state is free of perturbations, except for the internal hyperfine perturbations, and is in nearly pure case (b) coupling. Various satellite branches which were observed in the B-X transition confirm the case (a) nature of the B⁶Σ + state at low N. The spacing between the main branches and the satellite branches gives values for the spin-spin parameter λ and the spin-rotation parameter γ of the ground state.

Item Media

Item Citations and Data

Rights

For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.