UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Simplifying plasma balls and black holes with nonlinear diffusion Behan, Connor Classen

Abstract

The AdS / CFT dictionary, while still incomplete, hints at deep connections between thermal field theories and the dynamics of black holes. Without specifying a Lagrangian, we develop a non-standard approximation for field theories dominated by thermal noise in order to show that many black hole features are universal. Our model is a nonlinear partial differential equation which may be derived, as it was last year, by examining random equilibration of energy on a collection of sites. An extension pairing energy with other conserved quantities is also proposed. For typical holographic gauge theories, the linear versions of our models show that Hagedorn densities of states are associated with long lived lumps of deconfined plasma. With the help of numerical and mathematical results, we show that the nonlinear diffusion properties are more subtle and discuss the implications for using these models to study unsolved problems in holography.

Item Citations and Data

Rights

Attribution 2.5 Canada