UBC Theses and Dissertations

UBC Theses Logo

UBC Theses and Dissertations

Lanthanum complexes as therapeutic agents for the treatment of bone resorption disorders Weekes, David Michael

Abstract

Lanthanum naturally targets and binds skeletal tissue in living systems, wherein it has the potential to treat bone resorption disorders by invoking a biological response that counteracts an imbalanced bone remodeling cycle. Because lanthanum is very poorly absorbed, the key to realizing this potential is through rational chelator design, and in this regard, a number of lanthanum complexes have been designed, synthesized, and tested in an effort to develop an orally-active drug. Previously, past group members Dr. Cheri Barta and Dr. Yasmin Mawani had identified tris-(1,2-dimetyl-3-oxypyridin-4-one) lanthanum(III) (La(dpp)₃) and bis-[[bis(carboxymethyl)amino] methyl]phosphinate lanthanum(III) (La(XT)) as lead drug candidates, and – after tailoring the synthetic procedures to access large quantities of each – these compounds were tested for their thermodynamic and kinetic interactions with synthetic hydroxyapatite (HAP) by isothermal titration calorimetry (ITC) and solution depletion studies, respectively. The systems were also tested for the first time in vivo (healthy Sprague Dawley rats) by measuring lanthanum biodistribution from single-dose intravenous (IV), acute IV, and short-term IV and oral administration of either compound. Overall, it was found that La(XT) was a more viable candidate than La(dpp)₃, primarily due to higher thermodynamic stability which led to better oral uptake. Four new compounds (H₂dpa, H₃cedpa, H₄pedpa, and H₇alenpa) and three of their lanthanum complexes (all but H₇alenpa) were also synthesized, and tested for ligand binding kinetics with HAP (solution depletion studies), thermodynamic stability of the lanthanum complexes (potentiometric and NMR titrations), and lipophilicity of both the ligands and the metal complexes (partition coefficient measurements). It was found that [La(pedpa)]- exhibited the most favourable overall profile for a potential drug candidate, but requires further testing before in vivo trials. Crystal structures for [La₄(pedpa)₄(H₂O)₂] and [La(dpp)₃(H₂O)₂]·11.75H₂O were also obtained.

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International