Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/129316
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Cardiovascular bioimaging of nitric oxide: achievements, challenges, and the future
Author: Vidanapathirana, A.K.
Psaltis, P.J.
Bursill, C.A.
Abell, A.D.
Nicholls, S.J.
Citation: Medicinal Research Reviews, 2021; 41(1):435-463
Publisher: Wiley
Issue Date: 2021
ISSN: 0198-6325
1098-1128
Statement of
Responsibility: 
Achini K. Vidanapathirana, Peter J. Psaltis, Christina A. Bursill, Andrew D. Abell, Stephen J. Nicholls ... et al.
Abstract: Nitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM-µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real-time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.
Keywords: atherosclerosis
cardiovascular bioimaging
eNOS
iNOS
nitric oxide
Description: First published: 19 October 2020
Rights: © 2020 Wiley Periodicals LLC.
DOI: 10.1002/med.21736
Grant ID: http://purl.org/au-research/grants/nhmrc/1161506
http://purl.org/au-research/grants/nhmrc/1111630
http://purl.org/au-research/grants/arc/CE140100003
Published version: http://dx.doi.org/10.1002/med.21736
Appears in Collections:Aurora harvest 8
Medicine publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.