Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/61368
Citations
Scopus Web of Science® Altmetric
?
?
Type: Journal article
Title: Expansion of mouse sertoli cells on microcarriers
Author: Shi, B.
Zhang, S.
Wang, Y.
Zhuang, Y.
Chu, J.
Zhang, S.
Shi, X.
Bi, J.
Guo, M.
Citation: Cell Proliferation: in basic and clinical sciences, 2010; 43(3):275-286
Publisher: Blackwell Science Ltd
Issue Date: 2010
ISSN: 0960-7722
1365-2184
Statement of
Responsibility: 
B. Shi, S. Zhang, Y. Wang, Y. Zhuang, J. Chu, S. Zhang, X. Shi, J. Bi and M. Guo
Abstract: <h4>Background</h4>Sertoli cells (SCs) have been described as the 'nurse cells' of the testis whose primary function is to provide essential growth factors and create an appropriate environment for development of other cells [for example, germinal and nerve stem cells (NSCs), used here]. However, the greatest challenge at present is that it is difficult to obtain sufficient SCs of normal physiological function for cell transplantation and biological medicine, largely due to traditional static culture parameter difficult to be monitored and scaled up.<h4>Objective</h4>Operational stirred culture conditions for in vitro expansion and differentiation of SCs need to be optimized for large-scale culture.<h4>Materials and methods</h4>In this study, the culturing process for primary SC expansion and maintaining lack of differentiation was optimized for the first time, by using microcarrier bead technology in spinner flask culture. Effects of various feeding/refreshing regimes, stirring speeds, seed inoculum levels of SCs, and concentrations of microcarrier used for expansion of mouse SCs were also explored. In addition, pH, osmotic pressure and metabolic variables including consumption rates of glucose, glutamine, amino acids, and formation rates of lactic acid and ammonia, were investigated in culture.<h4>Results</h4>After 6 days, maximal cell densities achieved were 4.6 x 10(6) cells/ml for Cytodex-1 in DMEM/FBS compared to 4.8 x 10(5) cells/ml in static culture. Improved expansion was achieved using an inoculum of 1 x 10(5) cells/ml and microcarrier concentration of 3 mg/ml at stirring speed of 30 rpm. RESULTS indicated that medium replacement (50% changed everyday) resulted in supply of nutrients and removal of waste products inhibiting cell growth, that lead to maintenance of cultures in steady state for several days. These conditions favoured preservation of SCs in the undifferentiated state and significantly increased their physiological activity and trophic function, which were assessed by co-culturing with NSCs and immunostaining.<h4>Conclusion</h4>Data obtained in this study demonstrate the vast potential of this stirred culture system for efficient, reproducible and cost-effective expansion of SCs in vitro. The system has advantages over static culture, which has major obstacles such as lower cell density, is time-consuming and susceptible to contamination.
Keywords: Sertoli Cells
Cells, Cultured
Animals
Mice, Inbred ICR
Mice
Glucose
Amino Acids
Culture Media
Cell Culture Techniques
Coculture Techniques
Cell Count
Microspheres
Cell Differentiation
Cell Proliferation
Cell Survival
Male
Biomarkers
Rights: © 2010 Blackwell Publishing Ltd.
DOI: 10.1111/j.1365-2184.2010.00677.x
Published version: http://dx.doi.org/10.1111/j.1365-2184.2010.00677.x
Appears in Collections:Aurora harvest 5
Chemical Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.