Please use this identifier to cite or link to this item: https://hdl.handle.net/2440/83990
Type: Conference paper
Title: A robust Gauss-Newton algorithm and its application to the calibration of conceptual rainfall-runoff hydrological model
Author: Qin, Y.
Kuczera, G.
Kavetski, D.
Citation: Proceedings of 35th IAHR World Congress 2013, 2013 / W. Zhaoyin, J. H.-W. Lee, G. Jizhang, C. Shuyou (eds.): pp.1-10
Publisher: Tsinghua University Press Beijing
Publisher Place: China
Issue Date: 2013
Conference Name: IAHR World Congress (2013 : Chengdu, China)
Statement of
Responsibility: 
Youwei Qin, George Kuczera, Dmitri Kavetski
Abstract: Parameter estimation remains an ongoing challenge in hydrological modeling for a number of reasons. One severe challenge is that of numerically rough objective function surfaces characterized by discontinuities and pitting. This prevents the use of efficient gradient-based methods which converge prematurely. This has motivated development of probabilistic gradient-free search methods such as SCE-UA (shuffled complex evolution method developed at The University of Arizona), which although robust require substantially greater function evaluations. This paper introduces a robust Gauss-Newton method which can robustly search over rough objective function surfaces. It introduces a curve fitting strategy, an inexact line search and box constraints. The filtering technique is used to smooth the Jacobian matrix; the inexact line search method provides a self-adaptive method to update the scaling used in the filter; the box constraint minimizes the influence of a poor quadratic approximation where the Hessian matrix is near singular. The robust Gauss-Newton algorithm converges very rapidly in the vicinity of the global optimum. A case study involving conceptual hydrological models demonstrates the performance of the robust Gauss-Newton algorithm by comparing function evaluations and convergence success rate against the SCE-UA method in an exhaustive set of trials. The efficiency of the algorithm is measured by the number of function evaluations. The results show an improvement in efficiency more than 75% compared to the SCE-UA algorithm with comparable accuracy.
Keywords: Robust Gauss-Newton algorithm
SCE
model calibration
Snow model
SIMHYD model
Rights: © 2013 Tsinghua University Press, Beijing
Description (link): http://www.iahr2013.org/
Published version: http://www.iahr2013.org/proceedings.html
Appears in Collections:Aurora harvest 4
Civil and Environmental Engineering publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.