Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/142925
Title: | Periods of Modular GL2-type Abelian Varieties and p-adic Integration |
Author: | Guitart Morales, Xavier Masdeu, Marc |
Keywords: | Corbes el·líptiques Corbes sobre superfícies Elliptic curves Curves on surfaces |
Issue Date: | 1-Mar-2017 |
Publisher: | Taylor and Francis |
Abstract: | Let F be a number field and an integral ideal. Let f be a modular newform over F of level with rational Fourier coefficients. Under certain additional conditions, Guitart and colleagues [Guitart et al. 16[Guitart et al. 16] X. Guitart, M. Masdeu, and M. Haluk Şengün. "Uniformization of Modular Elliptic Curves via p-adic Periods." J. Algebra 445 (2016), 458-502. MR 3418066 [Crossref], [Web of Science ®] , [Google Scholar] ] constructed a p-adic lattice which is conjectured to be the Tate lattice of an elliptic curve Ef whose L-function equals that of f. The aim of this note is to generalize this construction when the Hecke eigenvalues of f generate a number field of degree d ⩾ 1, in which case the geometric object associated with f is expected to be, in general, an abelian variety Af of dimension d. We also provide numerical evidence supporting the conjectural construction in the case of abelian surfaces. |
Note: | Versió postprint del document publicat a: https://doi.org/10.1080/10586458.2017.1284624 |
It is part of: | Experimental Mathematics, 2017, vol. 27, num. 3, p. 344-361 |
URI: | https://hdl.handle.net/2445/142925 |
Related resource: | https://doi.org/10.1080/10586458.2017.1284624 |
ISSN: | 1058-6458 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
666650.pdf | 393.5 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.