Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/150079
Title: Conservation of different mechanisms of Hox cluster regulation within chordates
Author: Herrera Úbeda, Carlos
Director/Tutor: Garcia Fernández, Jordi
Keywords: Genòmica
Cordats
Genètica evolutiva
Genomics
Chordata
Evolutionary genetics
Issue Date: 16-Dec-2019
Publisher: Universitat de Barcelona
Abstract: [eng] In this thesis we have covered the importance of finding underlying conservation events to better understand the regulatory mechanisms of important development orchestrators like the Hox cluster. As an example of these non-evident conservation, we have shown two cases, as described below. The first case studied, after developing a software able to detect homologous long noncoding RNAs by means of microsynteny analyses, is the conservation of Hotairm1 in Chordata. For assessing the homology of this lncRNA, first we had to identify the lncRNA fraction within the B. lanceolatum transcriptome. With a reliable lincRNA dataset, we used our pipeline, LincOFinder, to identify orthologs between human and amphioxus through microsynteny. After the identification of Hotairm1 as one of the lincRNAs with conserved microsynteny, we used Xenopus as a proxy to analyse the homologies in the expression and the function. We had to proceed this way due to the difficulties associated with the inhibition of genes in B. lanceolatum, and the unavailability of expression patterns for Hotairm1 in the bibliography. After we successfully characterised Hotairm1 expression in amphioxus and Xenopus, we injected morpholino oligonucleotides to target and inhibit the splicing of Hotairm1 to promote an isoform imbalance. Through the phenotype obtained and the performing of qPCRs, we were able to deduct the mechanism of Hotairm1 and successfully relate this mechanism with the one described in human cells. With all the data obtained we were able to strongly suggest that the amphioxus Hotairm1 is homologous to the Xenopus and human Hotairm1, thus being conserved in most of the lineages within chordates. The second case studied was the conservation of the regulation of the Hox cluster mediated by Cdx. When analysing the B. floridae knockouts of Cdx and Pdx obtained using the TALEN technique, we found a severe phenotype of the developing larvae in Cdx-/- and a mild phenotype in Pdx-/-. The Cdx-/- phenotype consisted in the disruption of posterior gut development, as well as an underdevelopment of the postanal tail, coupled with a non-opening anus. When looking at changes in the expression of the Hox cluster in this Cdx-/- embryos, we found collinear misregulation of the expressed Hox genes, with the most anterior Hox cluster genes upregulated, and the most posterior ones downregulated. This is very similar to findings seen in triple morpholino knockdowns of the Cdx genes in Xenopus, indicating that in both, Xenopus and amphioxus, Cdx is regulating the Hox cluster through a homologous mechanism.
URI: http://hdl.handle.net/2445/150079
Appears in Collections:Tesis Doctorals - Departament - Genètica, Microbiologia i Estadística

Files in This Item:
File Description SizeFormat 
CHU_PhD_THESIS.pdf16.81 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons