Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/188921
Title: A cryopreservation method for bioengineered 3D cell culture models
Author: Herrero Gómez, Alba
Azagra, Marc
Marco Rius, Irene
Keywords: Criobiologia
Bioenginyeria
Cultiu cel·lular
Cryobiology
Bioengineering
Cell culture
Issue Date: 1-Jul-2022
Abstract: Technologies to cryogenically preserve (a.k.a. cryopreserve) living tissue, cell lines and primary cells have matured greatly for both clinicians and researchers since their first demonstration in the 1950s and are widely used in storage and transport applications. Currently, however, there remains an absence of viable cryopreservation and thawing methods for bioengineered, three-dimensional (3D) cell models, including patients' samples. As a first step towards addressing this gap, we demonstrate a viable protocol for spheroid cryopreservation and survival based on a 3D carboxymethyl cellulose scaffold and precise conditions for freezing and thawing. The protocol is tested using hepatocytes, for which the scaffold provides both the 3D structure for cells to self-arrange into spheroids and to support cells during freezing for optimal post-thaw viability. Cell viability after thawing is improved compared to conventional pellet models where cells settle under gravity to form a pseudo-tissue before freezing. The technique may advance cryobiology and other applications that demand high-integrity transport of pre-assembled 3D models (from cell lines and in future cells from patients) between facilities, for example between medical practice, research and testing facilities.
Note: Reproducció del document publicat a: https://doi.org/10.1088/1748-605X/ac76fb
It is part of: Biomedical Materials, 2022, vol. 17, num. 4, p. 045023
URI: https://hdl.handle.net/2445/188921
Related resource: https://doi.org/10.1088/1748-605X/ac76fb
ISSN: 1748-605X
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
2022_BioMat_Cryopreservation_MarcoI.pdf1.53 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons