Skip to main content
Log in

Stratospheric Photolysis Frequencies: Impact of an Improved Numerical Solution of the Radiative Transfer Equation

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Numerical schemes for the calculation of photolysis rates are usually employed in simulations of stratospheric chemistry. Here, we present an improvement of the treatment of the diffuse actinic flux in a widely used stratospheric photolysis scheme (Lary and Pyle, 1991). We discuss both the consequences of this improvement and the correction of an error present in earlier applications of this scheme on the calculation of stratospheric photolysis frequencies. The strongest impact of both changes to the scheme is for small solar zenith angles. The effect of the improved treatment of the diffuse flux is most pronounced in the lower stratosphere and in the troposphere. Overall, the change in the calculated photolysis frequencies in the region of interest in the stratosphere is below about 20%, although larger deviations are found for H2O, O2, NO, N2O, and HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I. A. (eds), 1965: Handbook of Mathematical Functions, Dover Publications, New York.

    Google Scholar 

  • Anderson, D. E. and Meier, R. R., 1979: The effects of anisotropic multiple scattering on solar radiation in the troposphere and stratosphere, Appl. Optics 18, 1955.

    Google Scholar 

  • Becker, G., Müller, R., McKenna, D. S., Rex, M., and Carslaw, K. S., 1998: Ozone loss rates in the Arctic stratosphere in the winter 1991/92: Model calculations compared with Match results, Geophys. Res. Lett. 25, 4325–4328.

    Google Scholar 

  • Bregman, A., van den Broek, M., Carslaw, K. S., Müller, R., Peter, T., Scheele, M. P., and Lelieveld, J., 1997: Ozone depletion in the late winter lower arctic stratosphere: Observations and model results, J. Geophys. Res. 102, 10815–10828.

    Google Scholar 

  • Chipperfield, M. P., Cariolle, D., Simon, P., Ramaroson, R., and Lary, D. J., 1993: A three dimensional modeling study of trace species in the Arctic lower stratosphere during winter 1989–1990, J. Geophys. Res. 98, 7199–7218.

    Google Scholar 

  • Crutzen, P. J., Grooß, J.-U., Brühl, C., Müller, R., and Russell III, J. M., 1995: A reevaluation of the ozone budget with HALOE UARS data: No evidence for the ozone deficit, Science, 268, 705–708.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL publication 97–4.

  • Grooß, J.-U., Müller, R., Becker, G., McKenna, D. S., and Crutzen, P. J., 1999: An update of the upper stratospheric ozone budget calculations based on HALOE data, J. Atmos. Chem., 34, 171–183.

    Google Scholar 

  • Lary, D. J. and Pyle, J. A., 1991: Diffuse radiation, twilight, and photochemistry — I, J. Atmos. Chem. 13, 373–406.

    Google Scholar 

  • Lary, D. J., Chipperfield, M. P., and Toumi, R., 1995: The potential impact of the reaction OH + ClO → HCl+O2 on polar ozone photochemistry, J. Atmos. Chem. 21, 61–79.

    Google Scholar 

  • Lean, J. L., Rottman, G. J., Kyle, H. L., Woods, T. N., Hickey, J. R., and Puga, L. C., 1997: Detection and parameterization of variations in solar mid-and near-ultraviolet radiation (200–400 nm), J. Geophys. Res. 102, 29939–29956.

    Google Scholar 

  • Lutman, E. R., Pyle, J. A., Chipperfield, M. P., Lary, D. J., Kilbane-Dawe, I., Waters, J. W., and Larsen, N., 1997: Three-dimensional studies of the 1991/1992 northern hemisphere winter using domain-filling trajectories with chemistry, J. Geophys. Res. 102, 1479–1488.

    Google Scholar 

  • Meier, R. R., Anderson Jr., D. E., and Nicolet, M., 1982: Radiation field in the troposphere and stratosphere from 240–1000 nm-I: General analysis, Planet. Space Sci., 30, 923–933.

    Google Scholar 

  • Meier, R. R., Anderson, G., Cantrell, C., Hall, L., Lean, J., Minschwaner, K., Shetter, R., Shettle, E., and Stamnes, K., 1997: Actinic radiation in the terrestrial atmosphere, J. Atmos. Solar-Terr. Phys., 59, 2111–2157.

    Google Scholar 

  • Müller, R., Crutzen, P. J., Oelhaf, H., Adrian, G. P., v. Clarmann, T., Wegner, A., Schmidt, U., and Lary, D., 1994: Chlorine chemistry and the potential for ozone depletion in the Arctic stratosphere in the winter of 1991/92, Geophys. Res. Lett. 21, 1427–1430.

    Google Scholar 

  • Stolarski, R. S., 1995: Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, NASA Reference Publication 1381, NASA.

  • WMO, 1986: Scientific Assessment of Ozone Depletion: 1985, Report No. 16, Geneva.

  • WMO, 1990: Scientific Assessment of Ozone Depletion: 1989, Report No. 20, Geneva.

  • WMO, 1998: Scientific Assessment of Ozone Depletion: 1998, Report No. 44, Geneva.

  • Woyke, T., Müller, R., Stroh, F., McKenna, D. S., Engel, A., Margitan, J. J., Rex, M., and Carslaw, K. S., 1999, A test of our understanding of the ozone chemistry in the Arctic polar vortex based on in-situ measurements of ClO, BrO, and O3 in the 1994/95 winter, J. Geophys. Res. 104, 18755–18768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, G., Grooss, JU., McKenna, D.S. et al. Stratospheric Photolysis Frequencies: Impact of an Improved Numerical Solution of the Radiative Transfer Equation. Journal of Atmospheric Chemistry 37, 217–229 (2000). https://doi.org/10.1023/A:1006468926530

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006468926530

Navigation