Skip to main content

Bioactive Small Molecules Mediate Microalgal-Bacterial Interactions

  • Chapter
  • First Online:
Systems Biology of Marine Ecosystems

Abstract

Microalgae are a diverse group of photosynthetic microorganisms found throughout the eukaryote tree. Although unicellular, they have complex relationships with the bacteria that surround them. These interactions can range from obligate symbiosis, where the bacterium is required for host survival, to pathogenic, where the bacterial pathogen can kill the host alga. The nature of these algal-bacterial interactions appear to be tightly regulated by both algal and bacterial bioactive molecules, creating a complex system of chemical interactions through which these different species can chemically communicate with each other and directly alter the other physiology. In this way the bacterium is able to exploit (and manipulate) its host to become a more conducive habitat (e.g. algal phycosphere, aquatic biofilms, etc.) for bacterial survival. However, the identity of many of these small molecules and the mechanisms by which they control these exchanges are often overlooked or misunderstood. The ability to eavesdrop on the chemical cross talk occurring between algae and bacteria may open up a vast potential for new knowledge, relating to understanding bacterial-algal relationships, evolution and possibly hijacking this communication to better control microbes in commercial systems. This chapter outlines some of the known bioactive chemicals that mediate these microalgal-bacterial interactions, highlighting what is currently known about these systems and areas that need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaro AM, Fuentes MS, Ogalde SR et al (2005) Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. J Eukaryot Microbiol 52:191–200

    Article  PubMed  Google Scholar 

  • Amin SA, Green DH, Hart MC, et al (2009a) Photolysis of iron-siderophore chelates promotes bacterial‚ algal mutualism. Proc Natl Acad Sci U S A 106:17071–17076

    Google Scholar 

  • Amin SA, Green DH, Küpper FC, et al (2009b) Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorg Chem 48:11451–11458

    Google Scholar 

  • Amin SA, Hmelo LR, van Tol HM, et al (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98–101

    Google Scholar 

  • Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    Article  CAS  PubMed  Google Scholar 

  • Ashen JB, Cohen JD, Goff LJ (1999) GC-SIM-MS detection and quantification of free indole-3-acetic acid in bacterial galls on the marine alga Prionitis lanceolata (Rhodophyta). J Phycol 35:493–500

    Article  CAS  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Piotrowska-Niczyporuk A (2013) Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem 71:290–297

    Article  CAS  PubMed  Google Scholar 

  • Baker DB, Ray PM (1965) Relation between effects of auxin on cell wall synthesis and cell elongation. Plant Physiol 40:360–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell W, Mitchell R (1972) Chemotactic and growth responses of marine bacteria to algal extracellular products. Mar Biol Lab 143:265–277

    Article  Google Scholar 

  • Bentzon-Tilia M, Gram L (2017) Biotechnological applications of the Roseobacter clade. In: Paterson R, Lima N (eds) Bioprospecting: success. Potential and Constraints. Springer International Publishing, Cham, pp 137–166

    Chapter  Google Scholar 

  • Berger M, Neumann A, Schulz S et al (2011) Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. J Bacteriol 193:6576–6585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar I, Kim SK (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8:2673–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidle KD (2015) The molecular ecophysiology of programmed cell death in marine phytoplankton. Annu Rev Mar Sci 7:341–375

    Article  Google Scholar 

  • Bidle KD, Vardi A (2011) A chemical arms race at sea mediates algal host-virus interactions. Curr Opin Microbiol 14:449–457

    Article  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Bolch CJS, Subramanian TA, Green DH (2011) The toxic dinoflagellate Gymnodinium Catenatum (Dinophyceae) requires marine bacteria for growth. J Phycol 47:1009–1022

    Article  PubMed  Google Scholar 

  • Borowitzka MA (2016) Chemically-mediated interactions in microalgae. In: Borowitzka MA (ed) The physiology of microalgae. Springer International Publishing, Switzerland, pp 321–357

    Chapter  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Boudet A-M (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    Article  CAS  Google Scholar 

  • Bowe LM, Coat G, DePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci U S A 97:4092–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramucci AR, Labeeuw L, Mayers TJ et al (2015) A small volume bioassay to assess bacterial/phytoplankton co-culture using WATER-pulse-amplitude-modulated (WATER-PAM) fluorometry. J Vis Exp 97:e52455

    Google Scholar 

  • Bratbak G, Thingstad TF (1985) Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar Ecol Prog Ser 25:23–30

    Article  Google Scholar 

  • Brinkhoff T, Bach G, Heidorn T et al (2004) Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol 70:2560–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JW, Sorhannus U (2010) A molecular genetic timescale for the diversification of autotrophic stramenopiles (Ochrophyta): substantive underestimation of putative fossil ages. PLoS One 5:e12759. doi:10.1371/journal.pone.0012759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruhn JB, Nielsen KF, Hjelm M et al (2005) Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ Microbiol 71:7263–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burki F (2014) The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 6:a016147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burkill PH, Archer SD, Robinson C et al (2002) Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): an overview. Deep Res Part II Top Stud Oceanogr 49:2863–2885

    Article  CAS  Google Scholar 

  • Cabello AM, Cornejo-Castillo FM, Raho N et al (2015) Global distribution and vertical patterns of a prymnesiophyte–cyanobacteria obligate symbiosis. ISME J 10:693–706

    Article  PubMed  PubMed Central  Google Scholar 

  • Carney LT, Lane TW (2014) Parasites in algae mass culture. Front Microbiol 5:1–8

    Article  Google Scholar 

  • Case RJ, Longford SR, Campbell AH et al (2011) Temperature induced bacterial virulence and bleaching disease in a chemically defended marine macroalga. Environ Microbiol 13:529–537

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cho DH, Ramanan R, Heo J et al (2015) Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour Technol 175:578–585

    Article  CAS  PubMed  Google Scholar 

  • Cho JY (2012) Algicidal activity of marine Alteromonas sp. KNS-16 and isolation of active compounds. Biosci Biotechnol Biochem 76:1452–1458

    Article  CAS  PubMed  Google Scholar 

  • Cole J (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  • Cooper MB, Smith AG (2015) Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol 26:147–153

    Article  PubMed  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E et al (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  CAS  PubMed  Google Scholar 

  • Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cude WN, Mooney J, Tavanaei AA et al (2012) Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol 78:4771–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De-Bashan LE, Antoun H, Bashan Y (2008) Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum Spp. in promoting growth of Chlorella Vulgaris. J Phycol 44:938–947

    Article  CAS  PubMed  Google Scholar 

  • De Nys R, Steinberg PD, Willemsen P et al (1995) Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling 8:259–271

    Article  Google Scholar 

  • Demuez M, González-Fernández C, Ballesteros M (2015) Algicidal microorganisms and secreted algicides: new tools to induce microalgal cell disruption. Biotechnol Adv 33:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Derelle R, Torruella G, Klimeš V et al (2015) Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A 112:E693–E699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickschat JS, Zell C, Brock NL (2010) Pathways and substrate specificity of DMSP catabolism in marine bacteria of the Roseobacter clade. Chembiochem 11:417–425

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96

    Article  CAS  PubMed  Google Scholar 

  • Dittami SM, Barbeyron T, Boyen C et al (2014) Genome and metabolic network of “Candidatus Phaeomarinobacter ectocarpi” Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae. Front Genet 5:1–13

    Article  CAS  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243

    Article  Google Scholar 

  • Douzery EJP, Snell EA, Bapteste E et al (2004) The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci U S A 101:15386–15391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durham BP, Sharma S, Luo H et al (2015) Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci 112:453–457

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Fernandes ND, Kumar V et al (2014) Bacterial pathogens, virulence mechanism and host defence in marine macroalgae. Environ Microbiol 16:925–938

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Harder T, Burke C et al (2013) The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev 37:462–476

    Article  CAS  PubMed  Google Scholar 

  • Eom SH, Kim YM, Kim SK (2012) Antimicrobial effect of phlorotannins from marine brown algae. Food Chem Toxicol 50:3251–3255

    Article  CAS  PubMed  Google Scholar 

  • Falkowski P (2012) The power of plankton. Science 483:7–10

    Google Scholar 

  • Falkowski PG (1994) The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res 39:235–258

    Article  CAS  PubMed  Google Scholar 

  • Fernandes N, Case RJ, Longford SR et al (2011) Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS One 6:e27387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Franz AK, Danielewicz MA, Wong DM et al (2013) Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chem Biol 8:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Li D, Wu C et al (2012) Effects of algicidal bacterium BS03 (Microbulbifer sp.) on the growth and antioxidant systems of Alexandrium tamarense. Acta Microbiol Sin 52:784–790

    CAS  Google Scholar 

  • Gachon CMM, Sime-Ngando T, Strittmatter M et al (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640

    Article  CAS  PubMed  Google Scholar 

  • Gardiner M, Thomas T, Egan S (2015) A glutathione peroxidase (GpoA) plays a role in the pathogenicity of Nautella italica strain R11 towards the red alga Delisea pulchra. FEMS Microbiol Ecol 91:1–5

    Article  CAS  Google Scholar 

  • Geng H, Belas R (2010) Molecular mechanisms underlying roseobacter-phytoplankton symbioses. Curr Opin Biotechnol 21:332–338

    Article  CAS  PubMed  Google Scholar 

  • Goecke F, Labes A, Wiese J et al (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–299

    Article  CAS  Google Scholar 

  • Goiris K, Muylaert K, Voorspoels S et al (2014) Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50:483–492

    Article  CAS  PubMed  Google Scholar 

  • González-Fernández C, Ballesteros M (2013) Microalgae autoflocculation: an alternative to high-energy consuming harvesting methods. J Appl Phycol 25:991–999

    Article  CAS  Google Scholar 

  • González JM, Simó R, Massana R et al (2000) Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246

    Article  PubMed  PubMed Central  Google Scholar 

  • Grami B, Rasconi S, Niquil N et al (2011) Functional effects of parasites on food web properties during the spring diatom bloom in lake pavin: a linear inverse modeling analysis. PLoS One. doi:10.1371/journal.pone.0023273

  • Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9:678–687

    Article  CAS  PubMed  Google Scholar 

  • Green DH, Echavarri-Bravo V, Brennan D et al (2015) Bacterial diversity associated with the coccolithophorid algae Emiliania huxleyi and Coccolithus pelagicus f. Braarudii. Biomed Res Int 2015:194540

    PubMed  PubMed Central  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ et al (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  CAS  PubMed  Google Scholar 

  • Grossart H-P (1999) Interactions between marine bacteria and axenic various conditions in the lab. Aquat Microb Ecol 19:1–11

    Article  Google Scholar 

  • Grossart H-P, Levold F, Allgaier M et al (2005) Marine diatom species harbour distinct bacterial communities. Environ Microbiol 7:860–873

    Article  CAS  PubMed  Google Scholar 

  • Grossart HP, Czub G, Simon M (2006) Algae-bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microbiol 8:1074–1084

    Article  PubMed  Google Scholar 

  • Gutierrez CK, Matsui GY, Lincoln DE et al (2009) Production of the phytohormone indole-3-acetic acid by estuarine species of the genus vibrio. Appl Environ Microbiol 75:2253–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutzeit G, Lorch D, Weber A et al (2005) Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. Water Sci Technol 52:9–18

    CAS  PubMed  Google Scholar 

  • Hancock L, Goff L, Lane C (2010) Red algae lose key mitochondrial genes in response to becoming parasitic. Genome Biol Evol 2:897–910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harder T, Campbell AH, Egan S et al (2012) Chemical mediation of ternary interactions between marine holobionts and their environment as exemplified by the red alga Delisea pulchra. J Chem Ecol 38:442–450

    Article  CAS  PubMed  Google Scholar 

  • Harvey EL, Deering RW, Rowley DC et al (2016) A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi. Front Microbiol 7:1–12

    Article  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Bio Ecol 200:103–134

    Article  CAS  Google Scholar 

  • Helliwell KE, Wheeler GL, Leptos KC et al (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28:2921–2933

    Article  CAS  PubMed  Google Scholar 

  • Holzinger A, Becker B (2015) Desiccation tolerance in the streptophyte green alga Klebsormidium: the role of phytohormones. Commun Integr Biol 8:e1059978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hom EFY, Aiyar P, Schaeme D et al (2015) A chemical perspective on microalgal-microbial interactions. Trends Plant Sci 20:689–693

    Article  CAS  PubMed  Google Scholar 

  • Howard EC, Henriksen JR, Buchan A et al (2006) Bacterial taxa that limit sulfur flux from the ocean. Science 314:649–652

    Article  CAS  PubMed  Google Scholar 

  • Hu G-P, Yuan J, Sun L et al (2011) Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar Drugs 9:514–525

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansson JK, Neufeld JD, Moran MA et al (2012) Omics for understanding microbial functional dynamics. Environ Microbiol 14:1–3

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Scherp P, Heimann K et al (2008) Auxin and cytoskeletal organization in algae. Cell Biol Int 32:542–545

    Article  CAS  PubMed  Google Scholar 

  • Joint I, Tait K, Callow ME et al (2002) Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 298:1207

    Article  PubMed  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kazamia E, Aldridge DC, Smith AG (2012) Synthetic ecology—a way forward for sustainable algal biofuel production? J Biotechnol 162:163–169

    Article  CAS  Google Scholar 

  • Kearns KD, Hunter MD (2001) Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb Ecol 42:80–86

    CAS  PubMed  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond Ser B Biol Sci 365:729–748

    Article  CAS  Google Scholar 

  • Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607

    Article  CAS  PubMed  Google Scholar 

  • Kenrick P, Crane P (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Keshtacher-Liebso E, Hadar Y, Chen Y (1995) Oligotrophic bacteria enhance algal growth under iron-deficient conditions. Appl Environ Microbiol 61:2439–2441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224

    Article  CAS  Google Scholar 

  • Kooistra WHCF, Medlin LK (1996) Evolution of the diatoms (Bacillariophyta). Mol Phylogenet Evol 6:391–407

    Article  CAS  PubMed  Google Scholar 

  • Kudoyarova GR, Arkhipova TN, Melentev AI (2015) Role of bacterial phytohormones in plant growth regulation and their development. In: Maheshwari DK (ed) Bacterial metabolites in sustainable Agroecosystem. Springer, Switzerland

    Google Scholar 

  • Kumar V, Zozaya-Valdes E, Kjelleberg S et al (2016) Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea Pulchra. Environ Microbiol 18:3962–3975

    Article  CAS  PubMed  Google Scholar 

  • Labeeuw L, Khey J, Bramucci AR et al (2016) Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells. Front Microbiol 7:1–16

    Article  Google Scholar 

  • Labeeuw L, Martone PT, Boucher Y et al (2015) Ancient origin of the biosynthesis of lignin precursors. Biol Direct 10:1–21

    Article  CAS  Google Scholar 

  • Lau S, Shao N, Bock R et al (2009) Auxin signaling in algal lineages: fact or myth? Trends Plant Sci 14:182–188

    Article  CAS  PubMed  Google Scholar 

  • Le Bail A, Billoud B, Kowalczyk N et al (2010) Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153:128–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee J, Cho DH, Ramanan R et al (2013) Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour Technol 131:195–201

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kato J, Takiguchi N et al (2000) Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl Environ Microbiol 66:4334–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legrand C, Rengefors K, Fistarol GO et al (2003) Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia 42:406–419

    Article  Google Scholar 

  • Lenneman EM, Wang P, Barney BM (2014) Potential application of algicidal bacteria for improved lipid recovery with specific algae. FEMS Microbiol Lett 354:102–110

    Article  CAS  PubMed  Google Scholar 

  • Li WKW (2002) Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419:154–157

    Article  CAS  PubMed  Google Scholar 

  • Litchman E, de Tezanos PP, Edwards KF et al (2015) Global biogeochemical impacts of phytoplankton: a trait-based perspective. J Ecol 103:1384–1396

    Article  CAS  Google Scholar 

  • Lohrer AM, Thrush SF, Hewitt JE et al (2015) The up-scaling of ecosystem functions in a heterogeneous world. Sci Rep 5:10349

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovejoy C, Bowman JP, Hallegraeff GM (1998) Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl Environ Microbiol 64:2806–2813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Xu J (2015) Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci 20:273–282

    Article  CAS  PubMed  Google Scholar 

  • Malmstrom RR, Kiene RP, Kirchman DL (2004) Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol Oceanogr 49:597–606

    Article  CAS  Google Scholar 

  • Mandal SK, Singh RP, Patel V (2011) Isolation and characterization of exopolysaccharide secreted by a toxic dinoflagellate, Amphidinium carterae Hulburt 1957 and its probable role in harmful algal blooms (HABs). Microb Ecol 62:518–527

    Article  CAS  PubMed  Google Scholar 

  • Martone PT, Estevez JM, Lu F et al (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175

    Article  CAS  PubMed  Google Scholar 

  • Maruyama A, Maeda M, Simidu U (1989) Distribution and classification of marine bacteria with the ability of Cytokinin and Auxin production. Bull Japanese Soc Microb Ecol 5:1–8

    Google Scholar 

  • Matsuo Y, Imagawa H, Nishizawa M et al (2005) Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307:1598

    Article  CAS  PubMed  Google Scholar 

  • Mayali X, Azam F (2004) Algicidal bacteria in the sea and their impact on algal blooms. J Eukaryot Microbiol 51:139–144

    Article  PubMed  Google Scholar 

  • Mayali X, Doucette GJ (2002) Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1:277–293

    Article  Google Scholar 

  • Mayers TJ, Bramucci AR, Yakimovich K et al (2016) A bacterial pathogen displaying temperature-enhanced virulence of the microalga Emiliania huxleyi. Front Microbiol. doi:10.3389/fmicb.2016.00892

  • Miller TR, Belas R (2004) Dimethylsulfoniopropionate metabolism by Pfiesteria-associated Roseobacter spp. Appl Environ Microbiol 70:3383–3391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller TR, Hnilicka K, Dziedzic A et al (2004) Chemotaxis of Silicibacter sp. strain TM1040 toward dinoflagellate products. Appl Environ Microbiol 70:4692–4701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsutani A, Yamasaki I, Kitaguchi H et al (2001) Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis. Phycologia 40:286–291

    Article  Google Scholar 

  • Moran MA, González JM, Kiene RP (2003) Linking a bacterial taxon to sulfur cycling in the sea: studies of the marine Roseobacter group. Geomicrobiol J 20:375–388

    Article  CAS  Google Scholar 

  • Nakashima T, Miyazaki Y, Matsuyama Y et al (2006) Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium γ-proteobacterium. Appl Microbiol Biotechnol 73:684–690

    Article  CAS  PubMed  Google Scholar 

  • Natrah FMI, Bossier P, Sorgeloos P et al (2014) Significance of microalgal-bacterial interactions for aquaculture. Rev Aquac 6:48–61

    Article  Google Scholar 

  • Natrah FMI, Kenmegne MM, Wiyoto W et al (2011) Effects of micro-algae commonly used in aquaculture on acyl-homoserine lactone quorum sensing. Aquaculture 317:53–57

    Article  CAS  Google Scholar 

  • Oh H-M, Lee SJ, Park M-H et al (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett 23:1229–1234

    Article  CAS  Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH et al (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108:13624–13629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MG, Yih W, Coats DW (2004) Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J Eukaryot Microbiol 51:145–155

    Article  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul C, Pohnert G (2011) Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One 6:e21032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22:198–204

    Article  PubMed  Google Scholar 

  • Potin P, Bouarab K, Salaün J-PP et al (2002) Biotic interactions of marine algae. Curr Opin Plant Biol 5:308–317

    Article  CAS  PubMed  Google Scholar 

  • Prol García MJ, D’Alvise PW, Gram L (2013) Disruption of cell-to-cell signaling does not abolish the antagonism of Phaeobacter gallaeciensis toward the fish pathogen Vibrio anguillarum in algal systems. Appl Environ Microbiol 79:5414–5417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Provasoli L (1958) Nutrition and ecology of protozoa and algae. Annu Rev Microbiol 12:279–308

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S, Bauer WD, Robinson JB et al (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant-Microbe Interact 21:1184–1192

    Article  CAS  PubMed  Google Scholar 

  • Ramanan R, Kim BH, Cho DH et al (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29

    Article  CAS  PubMed  Google Scholar 

  • Rao D, Webb JS, Holmström C et al (2007) Low densities of epiphytic bacteria from the marine alga Ulva Australis inhibit settlement of fouling organisms. Appl Environ Microbiol 73:7844–7852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read BA, Kegel J, Klute MJ et al (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–213

    Article  CAS  PubMed  Google Scholar 

  • Ribalet F, Intertaglia L, Lebaron P et al (2008) Differential effect of three polyunsaturated aldehydes on marine bacterial isolates. Aquat Toxicol 86:249–255

    Article  CAS  PubMed  Google Scholar 

  • Riclea R, Gleitzmann J, Bruns H et al (2012) Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi. Beilstein J Org Chem 8:941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross JJ, Reid JB (2010) Evolution of growth-promoting plant hormones. Funct Plant Biol 37:795–805

    Article  CAS  Google Scholar 

  • Sachs JL, Simms EL (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592

    Article  PubMed  Google Scholar 

  • Salama E-S, Kabra AN, Ji M-K et al (2014) Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol 172C:97–103

    Article  CAS  Google Scholar 

  • Schaefer AL, Greenberg EP, Oliver CM et al (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–599

    Article  CAS  PubMed  Google Scholar 

  • Schäfer H, Abbas B (2002) Genetic diversity of “satellite” bacteria present in cultures of marine diatoms. FEMS Microbiol Ecol 42:25–35

    PubMed  Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM et al (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    Article  CAS  PubMed  Google Scholar 

  • Segev E, Wyche TP, Kim KH et al (2016) Dynamic metabolic exchange governs a marine algal-bacterial interaction. elife 5:e17473

    Article  PubMed  PubMed Central  Google Scholar 

  • Seyedsayamdost MR, Carr G, Kolter R et al (2011a) Roseobacticides: small molecule modulators of an algal-bacterial symbiosis. J Am Chem Soc 133:18343–18349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedsayamdost MR, Case RJ, Kolter R et al (2011b) The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis—supplementary information. Nat Chem 3:331–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seyedsayamdost MR, Wang R, Kolter R et al (2014) Hybrid biosynthesis of roseobacticides from algal and bacterial precursor molecules. J Am Chem Soc 136:15150–15153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour JR, Simo R, Ahmed T et al (2010) Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342–345

    Article  CAS  PubMed  Google Scholar 

  • Sing SF, Isdepsky A, Borowitzka MA et al (2013) Production of biofuels from microalgae. Mitig Adapt Strateg Glob Chang 18:47–72

    Article  Google Scholar 

  • Singh RP, Bijo AJ, Baghel RS et al (2011) Role of bacterial isolates in enhancing the bud induction in the industrially important red alga Gracilaria dura. FEMS Microbiol Ecol 76:381–392

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Reddy CRK (2014) Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol Ecol 88:213–230

    Article  CAS  PubMed  Google Scholar 

  • Smriga S, Fernandez VI, Mitchell JG et al (2016) Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc Natl Acad Sci U S A 113:1576–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Spoerner M, Wichard T, Bachhuber T et al (2012) Growth and thallus morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J Phycol 48:1433–1447

    Article  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197

    Article  CAS  Google Scholar 

  • Steinberg PD, de Nys R (2002) Chemical mediation of colonization of seaweed surfaces. J Phycol 38:621–629

    Article  CAS  Google Scholar 

  • Stevenson J (2014) Ecological assessments with algae: a review and synthesis. J Phycol 50:437–461

    Article  PubMed  Google Scholar 

  • Stirk WA, Ördög V, Novák O et al (2013) Auxin and cytokinin relationships in 24 microalgal strains. J Phycol 49:459–467

    Article  CAS  PubMed  Google Scholar 

  • Stocker R, Seymour JR (2012) Ecology and physics of bacterial chemotaxis in the ocean. Microbiol Mol Biol Rev 76:792–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker R, Seymour JR, Samadani A et al (2008) Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci U S A 105:4209–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sule P, Belas R (2013) A novel inducer of Roseobacter motility is also a disruptor of algal symbiosis. J Bacteriol 195:637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunda W, Kieber DJ, Kiene RP et al (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317–320

    Article  CAS  PubMed  Google Scholar 

  • Tait K, Joint I, Daykin M et al (2005) Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ Microbiol 7:229–240

    Article  CAS  PubMed  Google Scholar 

  • Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170

    Article  CAS  Google Scholar 

  • Teplitski M, Chen H, Rajamani S et al (2004) Chlamydomonas reinhardtii Secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson AW, Foster RA, Krupke A et al (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337:1546–1550

    Article  CAS  PubMed  Google Scholar 

  • Tillmann U (2004) Interactions between planktonic microalgae and protozoan grazers. J Eukaryot Microbiol 51:156–168

    Article  PubMed  Google Scholar 

  • Tronchet M, Balagué C, Kroj T et al (2010) Cinnamyl alcohol dehydrogenases-C and D key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11:83–92

    Article  CAS  PubMed  Google Scholar 

  • Tujula NA, Crocetti GR, Burke C et al (2010) Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J 4:301–311

    Article  PubMed  Google Scholar 

  • Tyrrell T, Merico A (2004) Emiliania huxleyi: bloom observation and the conditions that induce them. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Coccolithophores: from molecular processes to global impact. Springer-Verlag, Berlin, pp 75–98

    Google Scholar 

  • Valiente-Banuet A, Verdú M (2008) Temporal shifts from facilitation to competition occur between closely related taxa. J Ecol 96:489–494

    Article  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vardi A, Haramaty L, Van Mooy BAS et al (2012) Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc Natl Acad Sci U S A 109:19327–19332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner-Döbler I, Ballhausen B, Berger M et al (2010) The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker’s guide to life in the sea. ISME J 4:61–77

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Hill RT, Zheng T et al (2014a) Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting. Crit Rev Biotechnol 36:1–12

    Google Scholar 

  • Wang H, Laughinghouse HD, Anderson MA et al (2012) Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1. Appl Environ Microbiol 78:1445–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Tomasch JJ, Jarek M et al (2014b) A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front Microbiol 5:1–11

    Google Scholar 

  • Wang M, Yuan W (2014) Bacterial lysis of microalgal cells. J Sustain Bioenergy Syst 4:243–248

    Article  CAS  Google Scholar 

  • Wang R, Gallant É, Seyedsayamdost R (2016) Investigation of the genetics and biochemistry of roseobacticide production in the Roseobacter clade bacterium Phaeobacter inhibens. MBio 7:1–10

    Article  CAS  Google Scholar 

  • Wang X, Li Z, Su J et al (2010) Lysis of a red-tide causing alga, Alexandrium tamarense, caused by bacteria from its phycosphere. Biol Control 52:123–130

    Article  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  CAS  PubMed  Google Scholar 

  • Weinberger F, Friedlander M, Hoppe H (1999) Oligoagars elicit a physiological response in Gracilaria Conferta (Rhodophyta). J Phycol 35:747–755

    Article  CAS  Google Scholar 

  • Weng J-K, Chapple C (2010) The origin and evolution of lignin biosynthesis. New Phytol 187:273–285

    Article  CAS  PubMed  Google Scholar 

  • Wichard T (2015) Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta). Front Plant Sci 6:86

    PubMed  PubMed Central  Google Scholar 

  • Wietz M, Duncan K, Patin NV et al (2013) Antagonistic interactions mediated by marine bacteria: the role of small molecules. J Chem Ecol 39:879–891

    Article  CAS  PubMed  Google Scholar 

  • Wolfe GV, Steinke M, Kirst GO (1997) Grazing-activated chemical defense in a unicellular marine alga. Nature 387:894–897

    Article  CAS  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth promoting rhizobacterium pseudomonas putida GR12-2 that overproduce indoleacetic-acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Yang Q, Chen L, Hu X et al (2015) Toxic effect of a marine bacterium on aquatic organisms and its algicidal substances against Phaeocystis globosa. PLoS One 10:1–16

    Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond Ser B Biol Sci 362:1195–1200

    Article  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C et al (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  • Zapalski MK (2011) Is absence of proof a proof of absence? Comments on commensalism. Palaeogeogr Palaeoclimatol Palaeoecol 302:484–488

    Article  Google Scholar 

Download references

Acknowledgement 

This work was supported by Natural Sciences and Engineering Research Council of Canada (grant 402105) to RJC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca J. Case .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Labeeuw, L., Bramucci, A.R., Case, R.J. (2017). Bioactive Small Molecules Mediate Microalgal-Bacterial Interactions. In: Kumar, M., Ralph, P. (eds) Systems Biology of Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-62094-7_14

Download citation

Publish with us

Policies and ethics