Skip to main content

Anaerobic Digestion and Gasification of Seaweed

  • Chapter
  • First Online:
Book cover Grand Challenges in Marine Biotechnology

Abstract

The potential of algal biomass as a source of liquid and gaseous biofuels is a highly topical theme, with over 70 years of sometimes intensive research and considerable financial investment. A wide range of unit operations can be combined to produce algal biofuel, but as yet there is no successful commercial system producing such biofuel. This suggests that there are major technical and engineering difficulties to be resolved before economically viable algal biofuel production can be achieved. Both gasification and anaerobic digestion have been suggested as promising methods for exploiting bioenergy from biomass, and two major projects have been funded in the UK on the gasification and anaerobic digestion of seaweed, MacroBioCrude and SeaGas. This chapter discusses the use of gasification and anaerobic digestion of seaweed for the production of biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milledge JJ, Harvey PJ (2016) Potential process ‘hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. J Chem Technol Biotechnol 91:2221–2234. https://doi.org/10.1002/jctb.5003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Smit A (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–262. https://doi.org/10.1023/B:JAPH.0000047783.36600.ef

    Article  CAS  Google Scholar 

  3. Yeong HY, Phang SM, Reddy CRK, Khalid N (2014) Production of clonal planting materials from Gracilaria changii and Kappaphycus alvarezii through tissue culture and culture of G-changii explants in airlift photobioreactors. J Appl Phycol 26:729–746. https://doi.org/10.1007/s10811-013-0122-4

    Article  CAS  Google Scholar 

  4. FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. FAO, Rome

    Google Scholar 

  5. Research and Markets (2016) Commercial seaweeds market by type (red, Brown, green), form (liquid, powdered, flakes), application (agriculture, animal feed, human food, and others), and by region – global forecasts to 2021, Dublin

    Google Scholar 

  6. Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18:27–46. https://doi.org/10.1007/s11027-010-9275-5

    Article  Google Scholar 

  7. Kelly MS, Dworjanyn S (2008) The potential of marine biomass for anaerobic biogas production a feasibility study with recommendations for further research. The Crown Estate on behalf of the Marine Estate, Scotland

    Google Scholar 

  8. Roesijadi G, Copping AE, Huesemann MH, Foster J, Benemann JR (2010) Techno-economic feasibility analysis of offshore seaweed farming for bioenergy and biobased products. US Department of Energy

    Google Scholar 

  9. Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: progress and perspectives. Renew Sust Energ Rev 47:427–437. https://doi.org/10.1016/j.rser.2015.03.086

    Article  CAS  Google Scholar 

  10. Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, Berkeley

    Google Scholar 

  11. Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504. https://doi.org/10.1016/j.biortech.2007.11.036

    Article  PubMed  CAS  Google Scholar 

  12. Marquez GPB, Santianez WJE, Trono GC, Montano MNE, Araki H, Takeuchi H, Hasegawa T (2014) Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew Sust Energ Rev 38:1056–1068. https://doi.org/10.1016/j.rser.2014.07.056

    Article  Google Scholar 

  13. Milledge JJ, Heaven S (2014) Methods of energy extraction from microalgal biomass: a review. Rev Environ Sci Biotechnol 13:301–320. https://doi.org/10.1007/s11157-014-9339-1

    Article  CAS  Google Scholar 

  14. Leu S, Boussiba S (2014) Advances in the production of high-value products by microalgae. Ind Biotechnol 10:169–183

    Article  CAS  Google Scholar 

  15. Rajkumar R, Yaakob Z, Takriff MS (2014) Potential of the micro and macro algae for biofuel production: a brief review. Bioresources 9:1606–1633

    Google Scholar 

  16. Chen H, Qiu T, Rong J, He C, Wang Q (2015) Microalgal biofuel revisited: an informatics-based analysis of developments to date and future prospects. Appl Energy 155:585–598. https://doi.org/10.1016/j.apenergy.2015.06.055

    Article  CAS  Google Scholar 

  17. Kerrison PD, Stanley MS, Edwards MD, Black KD, Hughes AD (2015) The cultivation of European kelp for bioenergy: site and species selection. Biomass Bioenergy 80:229–242. https://doi.org/10.1016/j.biombioe.2015.04.035

    Article  Google Scholar 

  18. European Commission (2014) Eurostat handbook for annual crop statistics. Eurostat, Luxembourg

    Google Scholar 

  19. McLaren J (2009) Sugarcane as a feedstock for biofuels: an analytical white paper. National Corn Growers Association, Chesterfield, MO

    Google Scholar 

  20. Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuel 24:4054–4061. https://doi.org/10.1021/ef100151h

    Article  CAS  Google Scholar 

  21. Anastasakis K, Ross AB (2011) Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition. Bioresour Technol 102:4876–4883. https://doi.org/10.1016/j.biortech.2011.01.031

    Article  PubMed  CAS  Google Scholar 

  22. IFRF. International Flame Research Foundation (2004) Online combustion handbook. Method from Combustion File 24

    Google Scholar 

  23. Heaven S, Milledge J, Zhang Y (2011) Comments on ‘Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnol Adv 29:164–167. https://doi.org/10.1016/j.biotechadv.2010.10.005

    Article  PubMed  CAS  Google Scholar 

  24. Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29R–40R. https://doi.org/10.1093/glycob/cwg058

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez-Jasso RM, Mussatto SI, Pastrana L, Aguilar CN, Teixeira JA (2014) Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chem Pap 68:203–209. https://doi.org/10.2478/s11696-013-0430-9

    Article  CAS  Google Scholar 

  26. Milledge JJ, Harvey PJ (2016) Ensilage and anaerobic digestion of Sargassum muticum. J Appl Phycol 28:3021–3030. https://doi.org/10.1007/s10811-016-0804-9

    Article  CAS  Google Scholar 

  27. Valderrama D, Cai J, Hishamunda N, Ridler N (2014) Social and economic dimensions of carrageenan seaweed farming. FAO, Rome

    Google Scholar 

  28. Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol 86:1679–1693

    Article  CAS  Google Scholar 

  29. Fudholi A, Sopian K, Othman MY, Ruslan MH (2014) Energy and exergy analyses of solar drying system of red seaweed. Energ Build 68:121–129. https://doi.org/10.1016/j.enbuild.2013.07.072

    Article  Google Scholar 

  30. Brennan L, Owende P (2010) Biofuels from microalgae--a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  31. Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University press, Cambridge

    Google Scholar 

  32. Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy Ireland, Dublin

    Google Scholar 

  33. Gallagher JA, Turner LB, Adams JMM, Dyer PW, Theodorou MK (2017) Dewatering treatments to increase dry matter content of the brown seaweed, kelp (Laminaria digitata ((Hudson) JV Lamouroux)). Bioresour Technol 224:662–669. https://doi.org/10.1016/j.biortech.2016.11.091

    Article  PubMed  CAS  Google Scholar 

  34. Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378. https://doi.org/10.1016/s0196-8904(00)00137-0

    Article  CAS  Google Scholar 

  35. Wang S, Jiang XM, Wang Q, Han XX, Ji HS (2013) Experiment and grey relational analysis of seaweed particle combustion in a fluidized bed. Energy Convers Manag 66:115–120. https://doi.org/10.1016/j.enconman.2012.10.006

    Article  Google Scholar 

  36. Yu LJ, Wang S, Jiang XM, Wang N, Zhang CQ (2008) Thermal analysis studies on combustion characteristics of seaweed. J Therm Anal Calorim 93:611–617. https://doi.org/10.1007/s10973-007-8274-6

    Article  CAS  Google Scholar 

  37. Milledge JJ, Smith B, Dyer P, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies 7:7194–7222

    Article  CAS  Google Scholar 

  38. Smith AM, Ross AB (2016) Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Res 16:1–11. https://doi.org/10.1016/j.algal.2016.02.026

    Article  Google Scholar 

  39. Bahadar A, Bilal Khan M (2013) Progress in energy from microalgae: a review. Renew Sust Energ Rev 27:128–148. https://doi.org/10.1016/j.rser.2013.06.029

    Article  CAS  Google Scholar 

  40. Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46. https://doi.org/10.1016/j.apenergy.2009.06.016

    Article  CAS  Google Scholar 

  41. Lenstra WJ, Hal JWV, Reith JH (2011) Economic aspects of open ocean seaweed cultivation. Paper presented at the Alg’n Chem 2011. Algae, new resources for industry, Montpellier

    Google Scholar 

  42. Murphy F, Devlin G, Deverell R, McDonnell K (2013) Biofuel production in Ireland—an approach to 2020 targets with a focus on algal biomass. Energies 6:6391–6412

    Article  Google Scholar 

  43. Streefland M (2010) Report on biofuel production processes from micro, macroalgae and other aquatic biomass. AquaFUELs, Brussels

    Google Scholar 

  44. van der Wal H, Sperber BLHM, Houweling-Tan B, Bakker RRC, Brandenburg W, López-Contreras AM (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437. https://doi.org/10.1016/j.biortech.2012.10.094

    Article  PubMed  CAS  Google Scholar 

  45. Rosillo-Calle F (2016) A review of biomass energy-shortcomings and concerns. J Chem Technol Biotechnol 91:1933–1945. https://doi.org/10.1002/jctb.4918

    Article  CAS  Google Scholar 

  46. Yang J, Xu M, Zhang XZ, Hu QA, Sommerfeld M, Chen YS (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165. https://doi.org/10.1016/j.biortech.2010.07.017

    Article  PubMed  CAS  Google Scholar 

  47. Walker DA (2010) Biofuels – for better or worse? Ann Appl Biol 156:319–327. https://doi.org/10.1111/j.1744-7348.2010.00404.x

    Article  Google Scholar 

  48. Jung KA, Lim SR, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190. https://doi.org/10.1016/j.biortech.2012.10.025

    Article  PubMed  CAS  Google Scholar 

  49. Tiwari B, Troy D (eds) (2015) Seaweed sustainability: food and non-food applications, 1st edn. Academic Press, Amsterdam

    Google Scholar 

  50. Kawai S, Murata K (2016) Biofuel production based on carbohydrates from both brown and red macroalgae: recent developments in key biotechnologies. Int J Mol Sci 17:145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered 4:224–235. https://doi.org/10.4161/bioe.23396

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wargacki AJ et al (2012) An engineered microbial platform for direct biofuel production from Brown macroalgae. Science 335:308–313. https://doi.org/10.1126/science.1214547

    Article  PubMed  CAS  Google Scholar 

  53. Badur AH, Jagtap SS, Yalamanchili G, Lee J-K, Zhao H, Rao CV (2015) Alginate Lyases from alginate-degrading Vibrio splendidus 12B01 are endolytic. Appl Environ Microbiol 81:1865–1873. https://doi.org/10.1128/aem.03460-14

    Article  PubMed  PubMed Central  Google Scholar 

  54. Huesemann M, Roesjadi G, Benemann J, Metting FB (2010) Biofuels from microalgae and seaweeds. In: Biomass to biofuels. Blackwell, Oxford, pp 165–184. https://doi.org/10.1002/9780470750025.ch8

    Chapter  Google Scholar 

  55. Aizawa M, Asaoka K, Atsumi M, Sakou T (2007) Seaweed bioethanol production in Japan – The Ocean Sunrise Project. OCEANS, IEEE, Vancouver, Canada, pp 1–5. https://doi.org/10.1109/OCEANS.2007.4449162

  56. Horn SJ, Aasen IM, Ostgaard K (2000) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254. https://doi.org/10.1038/sj.jim.7000065

    Article  CAS  Google Scholar 

  57. Parliamentary Office of Science & Technology (2011) Biofuels from algae, vol 384. Postnote

    Google Scholar 

  58. Potts T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica bay macro algae. Environ Prog Sustain Energy 31:29–36. https://doi.org/10.1002/ep.10606

    Article  CAS  Google Scholar 

  59. Huesemann MH, Kuo LJ, Urquhart L, Gill GA, Roesijadi G (2012) Acetone-butanol fermentation of marine macroalgae. Bioresour Technol 108:305–309. https://doi.org/10.1016/j.biortech.2011.12.148

    Article  PubMed  CAS  Google Scholar 

  60. McKendry P (2002a) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54. https://doi.org/10.1016/s0960-8524(01)00119-5

    Article  PubMed  CAS  Google Scholar 

  61. Torri C, Alba LG, Samori C, Fabbri D, Brilman DWF (2012) Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation. Energy Fuel 26:658–671. https://doi.org/10.1021/ef201417e

    Article  CAS  Google Scholar 

  62. Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuel 24:3639–3646. https://doi.org/10.1021/ef100203u

    Article  CAS  Google Scholar 

  63. Minowa T, Yokoyama S, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella-tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738. https://doi.org/10.1016/0016-2361(95)80001-x

    Article  CAS  Google Scholar 

  64. Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39. https://doi.org/10.1016/s0961-9534(99)00019-7

    Article  CAS  Google Scholar 

  65. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187. https://doi.org/10.1016/j.biortech.2012.01.008

    Article  PubMed  CAS  Google Scholar 

  66. Lee A, Lewis D, Kalaitzidis T, Ashman P (2016) Technical issues in the large-scale hydrothermal liquefaction of microalgal biomass to biocrude. Curr Opin Biotechnol 38:85–89. https://doi.org/10.1016/j.copbio.2016.01.004

    Article  PubMed  CAS  Google Scholar 

  67. Marcilla A, Catalá L, García-Quesada JC, Valdés FJ, Hernández MR (2013) A review of thermochemical conversion of microalgae. Renew Sust Energ Rev 27:11–19. https://doi.org/10.1016/j.rser.2013.06.032

    Article  CAS  Google Scholar 

  68. Singh J, Gu S (2010) Biomass conversion to energy in India-a critique. Renew Sust Energ Rev 14:1367–1378. https://doi.org/10.1016/j.rser.2010.01.013

    Article  CAS  Google Scholar 

  69. Ventura J-RS, Yang B, Lee Y-W, Lee K, Jahng D (2013) Life cycle analyses of CO2, energy, and cost for four different routes of microalgal bioenergy conversion. Bioresour Technol 137:302–310. https://doi.org/10.1016/j.biortech.2013.02.104

    Article  PubMed  CAS  Google Scholar 

  70. Delrue F, Seiter PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111:191–200. https://doi.org/10.1016/j.biortech.2012.02.020

    Article  PubMed  CAS  Google Scholar 

  71. McKendry P (2002b) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63. https://doi.org/10.1016/S0960-8524(01)00120-1

    Article  PubMed  CAS  Google Scholar 

  72. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289. https://doi.org/10.1016/j.rser.2011.02.015

    Article  CAS  Google Scholar 

  73. Ahmed II, Gupta AK (2010) Pyrolysis and gasification of food waste: syngas characteristics and char gasification kinetics. Appl Energy 87:101–108. https://doi.org/10.1016/j.apenergy.2009.08.032

    Article  CAS  Google Scholar 

  74. Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941. https://doi.org/10.1016/j.rser.2015.11.026

    Article  CAS  Google Scholar 

  75. Dry ME (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71:227–241. https://doi.org/10.1016/s0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  76. International Renewable Energy Agency IRENA (2013) Production of bio-methanol -technology brief. Abu Dhabi, United Arab Emirates

    Google Scholar 

  77. Hayashi J-I, Kudo S, Kim H-S, Norinaga K, Matsuoka K, Hosokai S (2013) Low-temperature gasification of biomass and lignite: consideration of key thermochemical phenomena, rearrangement of reactions, and reactor configuration. Energy Fuel 28:4–21. https://doi.org/10.1021/ef401617k

    Article  CAS  Google Scholar 

  78. Anex RP et al (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89(Suppl 1):S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015

    Article  CAS  Google Scholar 

  79. Guan QQ, Savage PE, Wei CH (2012) Gasification of alga Nannochloropsis sp in supercritical water. J Supercrit Fluids 61:139–145. https://doi.org/10.1016/j.supflu.2011.09.007

    Article  CAS  Google Scholar 

  80. Aziz M, Oda T, Kashiwagi T (2014) Advanced energy harvesting from macroalgae-innovative integration of drying, gasification and combined cycle. Energies 7:8217–8235. https://doi.org/10.3390/en7128217

    Article  CAS  Google Scholar 

  81. Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J (2015) Macroalgae in biofuel production. Phycol Res 63:1–18. https://doi.org/10.1111/pre.12078

    Article  CAS  Google Scholar 

  82. Guan QQ, Wei CH, Savage PE (2012) Kinetic model for supercritical water gasification of algae. Phys Chem Chem Phys 14:3140–3147. https://doi.org/10.1039/c2cp23792j

    Article  PubMed  CAS  Google Scholar 

  83. Woolf D, Lehmann J, Fisher EM, Angenent LT (2014) Biofuels from pyrolysis in perspective: trade-offs between energy yields and soil-carbon additions. Environ Sci Technol 48:6492–6499. https://doi.org/10.1021/es500474q

    Article  PubMed  CAS  Google Scholar 

  84. Nikolaison L et al (2012) Energy production fom macroalgae. Paper presented at the 20th European biomass conference, Milan

    Google Scholar 

  85. Cherad R, Onwudili JA, Ekpo U, Williams PT, Lea-Langton AR, Carmargo-Valero M, Ross AB (2013) Macroalgae supercritical water gasification combined with nutrient recycling for microalgae cultivation. Environ Prog Sustain Energy 32:902–909

    Article  CAS  Google Scholar 

  86. Onwudili JA, Lea-Langton AR, Ross AB, Williams PT (2013) Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling. Bioresour Technol 127:72–80. https://doi.org/10.1016/j.biortech.2012.10.020

    Article  PubMed  CAS  Google Scholar 

  87. Kwon EE, Jeon YJ, Yi H (2012) New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2). Bioresour Technol 123:673–677. https://doi.org/10.1016/j.biortech.2012.07.035

    Article  PubMed  CAS  Google Scholar 

  88. Ross AB, Anastasakis K, Kubacki M, Jones JM (2009) Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. J Anal Appl Pyrolysis 85:3–10. https://doi.org/10.1016/j.jaap.2008.11.004

    Article  CAS  Google Scholar 

  89. Kaewpanha M, Guan G, Hao X, Wang Z, Kasai Y, Kusakabe K, Abudula A (2014) Steam co-gasification of brown seaweed and land-based biomass. Fuel Process Technol 120:106–112. https://doi.org/10.1016/j.fuproc.2013.12.013

    Article  CAS  Google Scholar 

  90. Rizkiana J, Guan GQ, Widayatno WB, Hao XG, Huang W, Tsutsumi A, Abudula A (2014) Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures. Fuel 134:414–419. https://doi.org/10.1016/j.fuel.2014.06.008

    Article  CAS  Google Scholar 

  91. Rowbotham JS, Dyer PW, Greenwell HC, Selby D, Theodorou MK (2013) Copper(II)-mediated thermolysis of alginates: a model kinetic study on the influence of metal ions in the thermochemical processing of macroalgae. Interface Focus 3:20120046. https://doi.org/10.1098/rsfs.2012.0046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Peu P, Sassi JF, Girault R, Picard S, Saint-Cast P, Béline F, Dabert P (2011) Sulphur fate and anaerobic biodegradation potential during co-digestion of seaweed biomass (Ulva sp.) with pig slurry. Bioresour Technol 102:10794–10802. https://doi.org/10.1016/j.biortech.2011.08.096

    Article  PubMed  CAS  Google Scholar 

  93. Vanegas CH, Bartlett J (2013) Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species. Environ Technol 34:2277–2283. https://doi.org/10.1080/09593330.2013.765922

    Article  PubMed  CAS  Google Scholar 

  94. Ali Shah F, Mahmood Q, Maroof Shah M, Pervez A, Ahmad Asad S (2014) Microbial ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2014:183752. https://doi.org/10.1155/2014/183752

    Article  Google Scholar 

  95. McKennedy J, Sherlock O (2015) Anaerobic digestion of marine macroalgae: a review. Renew Sust Energ Rev 52:1781–1790. https://doi.org/10.1016/j.rser.2015.07.101

    Article  CAS  Google Scholar 

  96. Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951. https://doi.org/10.1016/j.biotechadv.2014.04.007

    Article  PubMed  CAS  Google Scholar 

  97. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860. https://doi.org/10.1007/s00253-009-2246-7

    Article  PubMed  CAS  Google Scholar 

  98. Barbot Y, Al-Ghaili H, Benz R (2016) A review on the valorization of macroalgal wastes for biomethane production. Mar Drugs 14:120

    Article  CAS  PubMed Central  Google Scholar 

  99. Sutherland A, Varela J (2014) Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea. BMC Biotechnol 14:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lewis J, Salam F, Slack N, Winton M, Hobson L (2011) Product options for the processing of marine macro-algae – summary report. The Crown Estates

    Google Scholar 

  101. Florentinus A, Harmelinck C, Lint SD, Iersel SV (2008) Worldwide potential of aquatic biomass. Ecofys, Utrecht

    Google Scholar 

  102. Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. U.S. Department of Energy, Washington

    Book  Google Scholar 

  103. Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012) Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels Bioprod Biorefin 6:205–218. https://doi.org/10.1002/bbb.337

    Article  CAS  Google Scholar 

  104. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42. https://doi.org/10.1016/j.biortech.2010.06.158

    Article  PubMed  CAS  Google Scholar 

  105. Samson R, LeDuy A (1983) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett 5:677–682. https://doi.org/10.1007/bf01386361

    Article  Google Scholar 

  106. Park S, Li YB (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48. https://doi.org/10.1016/j.biortech.2012.01.160

    Article  PubMed  CAS  Google Scholar 

  107. Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102:1149–1158. https://doi.org/10.1016/j.biortech.2010.09.017

    Article  PubMed  CAS  Google Scholar 

  108. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44:550–552. https://doi.org/10.1021/ie50507a033

    Article  CAS  Google Scholar 

  109. Symons GE, Buswell AM (1933) The methane fermentation of carbohydrates. J Am Chem Soc 55:2028–2036. https://doi.org/10.1021/ja01332a039

    Article  CAS  Google Scholar 

  110. Passos F, Gutiérrez R, Brockmann D, Steyer J-P, García J, Ferrer I (2015) Microalgae production in wastewater treatment systems, anaerobic digestion and modelling using ADM1. Algal Res 10:55–63. https://doi.org/10.1016/j.algal.2015.04.008

    Article  Google Scholar 

  111. Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Bruhn A et al (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604. https://doi.org/10.1016/j.biortech.2010.10.010

    Article  PubMed  CAS  Google Scholar 

  113. Alvarado-Morales M, Boldrin A, Karakashev DB, Holdt SL, Angelidaki I, Astrup T (2013) Life cycle assessment of biofuel production from brown seaweed in Nordic conditions. Bioresour Technol 129:92–99. https://doi.org/10.1016/j.biortech.2012.11.029

    Article  PubMed  CAS  Google Scholar 

  114. Soto M, Vazquez MA, de Vega A, Vilarino JM, Fernandez G, de Vicente ME (2015) Methane potential and anaerobic treatment feasibility of Sargassum muticum. Bioresour Technol 189:53–61. https://doi.org/10.1016/j.biortech.2015.03.074

    Article  PubMed  CAS  Google Scholar 

  115. Tabassum MR, Xia A, Murphy JD (2016) Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum. Bioresour Technol 216:219–226. https://doi.org/10.1016/j.biortech.2016.05.071

    Article  PubMed  CAS  Google Scholar 

  116. Ward AJ, Lewis DM, Green B (2014) Anaerobic digestion of algae biomass: a review algal research-biomass. Biofuels Bioproducts 5:204–214. https://doi.org/10.1016/j.algal.2014.02.001

    Article  Google Scholar 

  117. Mayfield SP (2015) Consortium for algal biofuel commercialization (CAB-COMM) final report

    Google Scholar 

  118. Moen E, Horn S, Østgaard K (1997) Biological degradation of Ascophyllum nodosum. J Appl Phycol 9:347–357. https://doi.org/10.1023/a:1007988712929

    Article  CAS  Google Scholar 

  119. Holdt S, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597. https://doi.org/10.1007/s10811-010-9632-5

    Article  CAS  Google Scholar 

  120. Connan S, Delisle F, Deslandes E, Gall EA (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:39–46. https://doi.org/10.1515/bot2006.005

    Article  CAS  Google Scholar 

  121. Gorham J, Lewey SA (1984) Seasonal changes in the chemical composition of Sargassum muticum. Mar Biol 80:103–107

    Article  CAS  Google Scholar 

  122. Tanniou A et al (2014) Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. J Appl Phycol 26:1215–1230. https://doi.org/10.1007/s10811-013-0198-x

    Article  CAS  Google Scholar 

  123. Hierholtzer A, Chatellard L, Kierans M, Akunna JC, Collier PJ (2013) The impact and mode of action of phenolic compounds extracted from brown seaweed on mixed anaerobic microbial cultures. J Appl Microbiol 114:964–973. https://doi.org/10.1111/jam.12114

    Article  PubMed  CAS  Google Scholar 

  124. Pérez MJ, Falqué E, Domínguez H (2016) Antimicrobial action of compounds from marine seaweed. Mar Drugs 14:52. https://doi.org/10.3390/md14030052

    Article  PubMed Central  CAS  Google Scholar 

  125. Mousa L, Forster CF (1999) The use of trace organics in anaerobic digestion. Process Saf Environ Prot 77:37–42. https://doi.org/10.1205/095758299529767

    Article  CAS  Google Scholar 

  126. López A, Rico M, Rivero A, Suárez de Tangil M (2011) The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem 125:1104–1109. https://doi.org/10.1016/j.foodchem.2010.09.101

    Article  CAS  Google Scholar 

  127. Hilton MG, Archer DB (1988) Anaerobic digestion of a sulfate-rich molasses wastewater: inhibition of hydrogen sulfide production. Biotechnol Bioeng 31:885–888. https://doi.org/10.1002/bit.260310817

    Article  PubMed  CAS  Google Scholar 

  128. Berglund M, Borjesson P (2006) Assessment of energy performance in the life-cycle of biogas production. Biomass Bioenergy 30:254–266. https://doi.org/10.1016/j.biombioe.2005.11.011

    Article  Google Scholar 

  129. Petersson A, Wellinger A (2009) Biogas upgrading technologies – developments and innovations. IEA Bioenergy, Cork

    Google Scholar 

  130. Ryckebosch E, Drouillon M, Veruaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645. https://doi.org/10.1016/j.biombioe.2011.02.033

    Article  CAS  Google Scholar 

  131. Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading – technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefin 7:499–511. https://doi.org/10.1002/bbb.1423

    Article  CAS  Google Scholar 

  132. Hierholtzer A, Akunna JC (2012) Modelling sodium inhibition on the anaerobic digestion process. Water Sci Technol 66:1565–1573. https://doi.org/10.2166/wst.2012.345

    Article  PubMed  CAS  Google Scholar 

  133. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682. https://doi.org/10.1016/j.watres.2006.08.027

    Article  PubMed  CAS  Google Scholar 

  134. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  PubMed  CAS  Google Scholar 

  135. Chen WH, Han SK, Sung S (2003) Sodium inhibition of thermophilic methanogens. J Environ Eng ASCE 129:506–512. https://doi.org/10.1061/(asce)0733-9372(2003)129:6(506)

    Article  CAS  Google Scholar 

  136. Ramakrishnan B, Kumaraswamy S, Mallick K, Adhya TK, Rao VR, Sethunathan N (1998) Effect of various anionic species on net methane production in flooded rice soils. World J Microbiol Biotechnol 14:743–749. https://doi.org/10.1023/A:1008814925481

    Article  CAS  Google Scholar 

  137. El-Dessouky HT, Ettouney HM (2002) Fundamentals of salt water desalination. Elsevier, Amsterdam

    Google Scholar 

  138. Adams JMM, Schmidt A, Gallagher JA (2015) The impact of sample preparation of the macroalgae Laminaria digitata on the production of the biofuels bioethanol and biomethane. J Appl Phycol 27:985–991. https://doi.org/10.1007/s10811-014-0368-5

    Article  CAS  Google Scholar 

  139. Roberts KP, Heaven S, Banks CJ (2016) Quantification of methane losses from the acclimatisation of anaerobic digestion to marine salt concentrations. Renew Energy 86:497–506. https://doi.org/10.1016/j.renene.2015.08.045

    Article  CAS  Google Scholar 

  140. Tedesco S, Barroso TM, Olabi AG (2014) Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas. Renew Energy 62:527–534. https://doi.org/10.1016/j.renene.2013.08.023

    Article  CAS  Google Scholar 

  141. Milledge J, Heaven S (2017) Energy balance of biogas production from microalgae: effect of harvesting method, multiple raceways, scale of plant and combined heat and power generation. J Mar Sci Eng 5:9

    Article  Google Scholar 

  142. ter Veld F (2012) Beyond the fossil fuel era: on the feasibility of sustainable electricity generation using biogas from microalgae. Energy Fuel 26:3882–3890. https://doi.org/10.1021/ef3004569

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) project number EP/K014900/1 (MacroBioCrude: Developing an Integrated Supply and Processing Pipeline for the Sustained Production of Ensiled Macroalgae-derived Hydrocarbon Fuels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Milledge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Milledge, J.J., Harvey, P.J. (2018). Anaerobic Digestion and Gasification of Seaweed. In: Rampelotto, P., Trincone, A. (eds) Grand Challenges in Marine Biotechnology. Grand Challenges in Biology and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-69075-9_7

Download citation

Publish with us

Policies and ethics