Skip to main content

Advertisement

Log in

Color change in the Sargassum crab, Portunus sayi: response to diel illumination cycle and background albedo

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Floating mats of Sargassum macroalgae provide a model system for studying multiple aspects of animal coloration. The endemic crab Portunus sayi has heterogeneous yellow and brown patterning, which matches its algal background. We show that by fluctuating the chromatophores underneath its transparent carapace, the crab can alter its coloration within hours in response to diel variability in the ambient light field and to changes in background reflectance. Held in a naturalistic illumination and temperature regime, P. sayi displayed a distinct diel cycle of coloration, being pale at night and darker during the day. Individuals under constant illumination showed a modified cycle, retaining their nocturnal shading but becoming significantly paler during day time. On monochromatic black, grey, and white surfaces, crabs showed an ability to change coloration in response to their backgrounds, as integrated reflectance (ΣR) of crabs generally followed background albedo. This study expands on earlier work which revealed that P. sayi utilizes a distinct camouflage strategy from other cryptic Sargassum crabs to achieve background color matching in the view of predators. Dynamic color change in this species may play roles including photoprotection and enhancing camouflage in a unique marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramowitz AA (1935) Color changes in cancroid crabs of Bermuda. Proc Natl Acad Sci USA 21:677

    Article  CAS  Google Scholar 

  • Abramowitz AA (1937) The chromatophorotropic hormone of the Crustacea: standardization, properties and physiology of the eye-stalk glands. Biol Bull 72:344. https://doi.org/10.2307/1537694

    Article  CAS  Google Scholar 

  • Baldwin J, Johnsen S (2012) The male blue crab, Callinectes sapidus, uses both chromatic and achromatic cues during mate choice. J Exp Biol 215:1184–1191. https://doi.org/10.1242/jeb.067512

    Article  Google Scholar 

  • Ballance L, Pitman R (1999) S34. 4: foraging ecology of tropical seabirds. In: Proceedings of the 22nd international ornithological congress, Durban. Citeseer, pp 2057–2071

  • Barnwell FH (1968) Comparative aspects of the chromatophoric responses to light and temperature in fiddler crabs of the genus Uca. Biol Bull 134:221. https://doi.org/10.2307/1539598

    Article  CAS  Google Scholar 

  • Brooks WR, Hutchinson KA, Tolbert MG (2007) Pelagic Sargassum mediates predation among symbiotic fishes and shrimps. Gulf Mex Sci 2:144–152

    Google Scholar 

  • Brown FA (1933) The controlling mechanism of chromatophores in Palaemonetes. Proc Natl Acad Sci 19:327–329

    Article  CAS  Google Scholar 

  • Brown FA (1939) The coloration and color changes of the gulf-weed shrimp, Latreutes fucorum. Am Nat 73:564–568

    Article  Google Scholar 

  • Brown FA (1950) Studies on the physiology of Uca red chromatophores. Biol Bull 98:218. https://doi.org/10.2307/1538669

    Article  Google Scholar 

  • Brown FA, Sandeen MI (1948) Responses of the chromatophores of the fiddler crab, Uca, to light and temperature. Physiol Zool 21:361–371

    Article  Google Scholar 

  • Brown FA, Fingerman M, Sandeen MI, Webb HM (1953) Persistent diurnal and tidal rhythms of color change in the fiddler crab, Uca pugnax. J Exp Zool 123:29–60

    Article  Google Scholar 

  • Butler JN, Morris BF, Cadwallader J, Stoner AW (1983) Studies of Sargassum and the Sargassum community, vol 22. Bermuda Biological Station Research, Bermuda, 307p

  • Chace FA (1951) The oceanic crabs of the genera Planes and Pachygrapsus. Proc US Natl Mus 101:65–103

    Article  Google Scholar 

  • Coohill TP, Fingerman M (1975) Relative effectiveness of ultraviolet and visible light in eliciting pigment dispersion in melanophores of the fiddler crab, Uca pugilator, through the secondary response. Physiol Zool 48:57–63

    Article  Google Scholar 

  • Coohill TP, Fingerman M (1976) Comparison of the effects of illumination on the melanophores of intact and eyestalkless fiddler crabs, Uca pugilator, and inhibition of the primary response by cytochalasin B. Experientia 32:569–570

    Article  CAS  Google Scholar 

  • Coohill TP, Bartell CK, Fingerman M (1970) Relative effectiveness of ultraviolet and visible light in eliciting pigment dispersion directly in melanophores of the fiddler crab, Uca pugilator. Physiol Zool 43:232–239

    Article  Google Scholar 

  • Coston-Clements L, Settle LR, Hoss DE, Cross FA (1991) Utilization of the Sargassum habitat by marine invertebrates and vertebrates—a review. NOAA Tech Mem NMFS-SEFSC-296

  • Crane J (1944) On the color changes of fiddler crabs in the field. Zoologica 29:161–168

    Google Scholar 

  • Crozier WJ (1918) Note on the coloration of Planes minutus. Am Nat 52:262–263

    Article  Google Scholar 

  • Darnell MZ (2012) Ecological physiology of the circadian pigmentation rhythm in the fiddler crab Uca panacea. J Exp Mar Biol Ecol 426–427:39–47. https://doi.org/10.1016/j.jembe.2012.05.014

    Article  Google Scholar 

  • De Robertis A (2002) Size-dependent visual predation risk and the timing of vertical migration: an optimization model. Limnol Oceanogr 47:925–933

    Article  Google Scholar 

  • Detto T (2007) The fiddler crab Uca mjoebergi uses colour vision in mate choice. Proc R Soc B Biol Sci 274:2785–2790. https://doi.org/10.1098/rspb.2007.1059

    Article  Google Scholar 

  • Detto T, Backwell PR, Hemmi JM, Zeil J (2006) Visually mediated species and neighbour recognition in fiddler crabs (Uca mjoebergi and Uca capricornis). Proc R Soc B Biol Sci 273:1661–1666. https://doi.org/10.1098/rspb.2006.3503

    Article  Google Scholar 

  • Detto T, Hemmi JM, Backwell PRY (2008) Colouration and colour changes of the fiddler crab, Uca capricornis: a descriptive study. PLoS One 3:e1629. https://doi.org/10.1371/journal.pone.0001629

    Article  Google Scholar 

  • Dierssen HM, Chlus A, Russell B (2015) Hyperspectral discrimination of floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using airborne remote sensing. Remote Sens Environ 167:247–258. https://doi.org/10.1016/j.rse.2015.01.027

    Article  Google Scholar 

  • Emery CJ (1984) The ecological impact of near ultraviolet radiation on Daphnia pulex. Master’s, University of Windsor

  • Endler JA (1978) A predator’s view of animal colour patterns. Evol Biol 11:319–364

    Google Scholar 

  • Fingerman M (1955) Persistent daily and tidal rhythms of color change in Callinectes sapidus. Biol Bull 109:255–264

    Article  Google Scholar 

  • Fingerman M (1956a) Phase difference in the tidal rhythms of color change of two species of fiddler crab. Biol Bull 110:274. https://doi.org/10.2307/1538833

    Article  Google Scholar 

  • Fingerman M (1956b) Physiology of the black and red chromatophores of Callinectes sapidus. J Exp Zool 133:87–105

    Article  Google Scholar 

  • Fingerman M (1963) The control of chromatophores. Macmillan, New York

    Google Scholar 

  • Fingerman M (1965) Chromatophores. Physiol Rev 45:296–339

    Article  CAS  Google Scholar 

  • Fingerman M, Tinkle DW (1956) Responses of the white chromatophores of two species of prawns (Palaemonetes) to light and temperature. Biol Bull 110:144–152

    Article  Google Scholar 

  • Fingerman M, Lowe ME, Mobberly WC (1958) Environmental factors involved in setting the phases of tidal rhythm of color change in the fiddler crabs Uca pugilator and Uca minax. Limnol Oceanogr 3:271–282

    Article  Google Scholar 

  • Fingerman M, Nagabhushanam R, Philpott L (1961) Physiology of the melanophores in the crab Sesarma reticulatum. Biol Bull 120:337–347

    Article  Google Scholar 

  • Gouveia GR, Lopes TM, Neves CA, Nery LEM, Trindade GS (2004) Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores. Pigment Cell Res 17:545–548

    Article  CAS  Google Scholar 

  • Granato FC, Tironi TS, Maciel FE, Rosa CE, Vargas MA, Nery LEM (2004) Circadian rhythm of pigment migration induced by chromatrophorotropins in melanophores of the crab Chasmagnathus granulata. Comp Biochem Physiol A Mol Integr Physiol 138:313–319. https://doi.org/10.1016/j.cbpb.2004.04.009

    Article  Google Scholar 

  • Green JP (1964a) Morphological color change in the fiddler crab, Uca pugnax (S. I. Smith). Biol Bull 127:239. https://doi.org/10.2307/1539223

    Article  Google Scholar 

  • Green JP (1964b) Morphological color change in the Hawaiian ghost crab, Ocypode ceratophthalma (Pallas). Biol Bull 126:407. https://doi.org/10.2307/1539309

    Article  Google Scholar 

  • Hacker SD, Madin LP (1991) Why habitat architecture and color are important to shrimps living in pelagic Sargassum: use of camouflage and plant-part mimicry. Mar Ecol Prog Ser 70:143–155

    Article  Google Scholar 

  • Haney JC (1986) Seabird patchiness in tropical oceanic waters: the influence of Sargassum “reefs”. Auk 103:141–151

    Google Scholar 

  • Hemmi JM, Marshall J, Pix W, Vorobyev M, Zeil J (2006) The variable colours of the fiddler crab Uca vomeris and their relation to background and predation. J Exp Biol 209:4140–4153. https://doi.org/10.1242/jeb.02483

    Article  Google Scholar 

  • Herreid CF, Mooney SM (1984) Color change in exercising crabs: evidence for a hormone. J Comp Physiol B 154:207–212

    Article  CAS  Google Scholar 

  • Hervey R (2011) Hervey RV, US DOC, NOAA, NWS, National Data Buoy Center (2011) Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys during 2011-06 (NODC accession 0074384). version 2.2. National Oceanographic Data Center, NOAA. Dataset

  • Hitchcock HB (1941) The coloration and color changes of the gulf-weed crab, Planes minutus. Biol Bull 80:26–30

    Article  Google Scholar 

  • Horst MN, Freeman JA (1993) The crustacean integument: morphology and biochemistry. CRC Press, Boca Raton

    Google Scholar 

  • Hultgren KM, Mittelstaedt H (2015) Color change in a marine isopod is adaptive in reducing predation. Curr Zool 6:739–748

    Article  Google Scholar 

  • Hultgren KM, Stachowicz JJ (2008) Alternative camouflage strategies mediate predation risk among closely related co-occurring kelp crabs. Oecologia 155:519–528. https://doi.org/10.1007/s00442-007-0926-5

    Article  Google Scholar 

  • Iampietro PJ (1999) Distribution, diet, and pigmentation of the northern kelp crab, Pugettia producta (Randall) in central California kelp forests. Master’s, California State University, Stanislaus

  • Jensen GC, Egnotovich MS (2015) A whiter shade of male: color background matching as a function of size and sex in the yellow shore crab Hemigrapsus oregonensis (Dana, 1851). Curr Zool 61:729–738

    Article  Google Scholar 

  • Jobe CF, Brooks WR (2009) Habitat selection and host location by symbiotic shrimps associated with Sargassum communities: the role of chemical and visual cues. Symbiosis 49:77–85. https://doi.org/10.1007/s13199-009-0017-y

    Article  Google Scholar 

  • Kolwalkar DG, Rangnekar PV (1979) Morphological color change in the marine crab Portunus pelagicus. J Bombay Nat Hist Soc 76:540–543

    Google Scholar 

  • Korínek V, Frey DG (eds) (2013) Biology of Cladocera. In: Proceedings of the second international symposium on Cladocera, Tatranska Lomnica, Czechoslovakia, 13–20, September 1989. Springer, Netherlands

  • Kronstadt SM, Darnell MZ, Munguia P (2013) Background and temperature effects on Uca panacea color change. Mar Biol 160:1373–1381. https://doi.org/10.1007/s00227-013-2189-5

    Article  Google Scholar 

  • Morris BF, Mogelberg DD (1973) Identification manual to the pelagic Sargassum fauna. Bermuda Biological Station for Research, St Georges, p 22

  • Munguia P, Levinton JS, Silbiger NJ (2013) Latitudinal differences in thermoregulatory color change in Uca pugilator. J Exp Mar Biol Ecol 440:8–14. https://doi.org/10.1016/j.jembe.2012.11.010

    Article  Google Scholar 

  • Oro D, Martínez-Abraín A (2005) Ecology and behavior of seabirds. In: Duarte CM, Lota A (eds) Marine ecology, encyclopedia of life support systems (EOLSS). Eolss Publishers-UNESCO, Oxford

    Google Scholar 

  • Powell BL (1962) The responses of the chromatophores of Carcinus maenas (L., 1758) to light and temperature. Crustaceana 4:93–102

    Article  Google Scholar 

  • Rooker JR, Turner JP, Holt SA (2006) Trophic ecology of Sargassum-associated fishes in the Gulf of Mexico determined from stable isotopes and fatty acids. Mar Ecol Prog Ser 313:249–259

    Article  CAS  Google Scholar 

  • Russell BJ, Dierssen HM (2015) Use of hyperspectral imagery to assess cryptic color matching in Sargassum associated crabs. PLoS One 10:e0136260

    Article  Google Scholar 

  • Russell B, Dierssen H, LaJeunesse T, Hoadley K, Warner M, Kemp D, Bateman T (2016) Spectral reflectance of Palauan reef-building coral with different symbionts in response to elevated temperature. Remote Sens 8:164. https://doi.org/10.3390/rs8030164

    Article  Google Scholar 

  • Shih H-T, Mok H-K, Chang H-W, Lee S-C (1999) Morphology of Uca formosensis (Rathbun, 1921) (Crustacea: Decapoda: Ocypodidae), an endemic fiddler crab from Taiwan, with notes on its ecology. Zool Stud Taipei 38:164–177

    Google Scholar 

  • Silbiger N, Munguia P (2008) Carapace color change in Uca pugilator as a response to temperature. J Exp Mar Biol Ecol 355:41–46. https://doi.org/10.1016/j.jembe.2007.11.014

    Article  Google Scholar 

  • Stachowicz JJ, Lindquist N (1997) Chemical defense among hydroids on pelagic Sargassum: predator deterrence and absorption of solar UV radiation by secondary metabolites. Mar Ecol Prog Ser 155:115–126

    Article  CAS  Google Scholar 

  • Stachowicz JJ, Lindquist N (2000) Hydroid defenses against predators: the importance of secondary metabolites versus nematocysts. Oecologia 124:280–288

    Article  CAS  Google Scholar 

  • Stevens M (2016) Color change, phenotypic plasticity, and camouflage. Front Ecol Evol. https://doi.org/10.3389/fevo.2016.00051

    Google Scholar 

  • Stevens M, Merilaita S (eds) (2011) Animal camouflage: mechanisms and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Stevens M, Rong CP, Todd PA (2013) Colour change and camouflage in the horned ghost crab Ocypode ceratophthalmus. Biol J Linn Soc 109:257–270

    Article  Google Scholar 

  • Stevens M, Lown AE, Wood LE (2014a) Camouflage and individual variation in shore crabs (Carcinus maenas) from different habitats. PLoS One 9:e115586. https://doi.org/10.1371/journal.pone.0115586

    Article  Google Scholar 

  • Stevens M, Lown AE, Wood LE (2014b) Color change and camouflage in juvenile shore crabs Carcinus maenas. Front Ecol Evol. https://doi.org/10.3389/fevo.2014.00014

    Google Scholar 

  • Thurman CL (1988) Rhythmic physiological color change in Crustacea: a review. Comp Biochem Physiol Part C Comp Pharmacol 91:171–185. https://doi.org/10.1016/0742-8413(88)90184-3

    Article  Google Scholar 

  • Thurman CL (1990) Adaptive coloration in Texas fiddler crabs (Uca). In: Wickstein M (ed) Adaptive coloration in invertebrates. Texas A&M University Press, Texas, pp 109–126

    Google Scholar 

  • Umbers KDL, Fabricant SA, Gawryszewski FM, Seago AE, Herberstein ME (2014) Reversible colour change in Arthropoda: Arthropod colour change. Biol Rev 89:820–848. https://doi.org/10.1111/brv.12079

    Article  Google Scholar 

  • Welsh JH (1938) Diurnal rhythms. Q Rev Biol 13:123–139

    Article  Google Scholar 

  • White TE, Dalrymple RL, Noble DWA, O’Hanlon JC, Zurek DB, Umbers KDL (2015) Reproducible research in the study of biological coloration. Anim Behav 106:51–57. https://doi.org/10.1016/j.anbehav.2015.05.007

    Article  Google Scholar 

  • Wilkens JL, Fingerman M (1965) Heat tolerance and temperature relationships of the fiddler crab, Uca pugilator, with reference to body coloration. Biol Bull 128:133–141

    Article  Google Scholar 

  • Zeil J, Hofmann M (2001) Signals from “crabworld”: cuticular reflections in a fiddler crab colony. J Exp Biol 204:2561–2569

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the staff of Keys Marine Lab in providing facilities, vessel support, and collection assistance, as well as an anonymous reviewer for suggestions to improve an earlier version of this manuscript.

Funding

This work was funded by the Office of Naval Research Multi-University Research Initiative (N000140911054), and by a pre-doctoral award from the University of Connecticut Department of Marine Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon J. Russell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human/animal rights statement

All applicable national, state, and University of Connecticut ethical standards regarding the use of animals were observed. Only invertebrates were used in this study. All care was taken to ensure humane treatment of animals.

Additional information

Responsible Editor: S. Shumway.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, B.J., Dierssen, H.M. Color change in the Sargassum crab, Portunus sayi: response to diel illumination cycle and background albedo. Mar Biol 165, 28 (2018). https://doi.org/10.1007/s00227-018-3287-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-018-3287-1

Navigation