Skip to main content
Log in

Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico

  • Original Article
  • Published:
Environmental Geology

Abstract

Groundwater quality in the Santo Domingo Irrigation District area in Baja California Sur, Mexico, indicates the presence of various salinization processes, (1) the geological matter of marine origin comprising the aquifer material suffers diagenetic effects due to its interaction with groundwater of low salinity, (2) the effects of intensive agriculture practices produce effluents that infiltrate to the saturated zone, and (3) the extraction of groundwater causes modifications in the natural flow system induces lateral flow of seawater from the coast line. However, groundwater management has been carried out with the belief that the latter is the main source of salinization. This has resulted in a policy of installing wells increasingly far from the coast, which is not solving the problem. Irrigation-return and seawater that remains in the geological units have been identified as major sources of salinization. Controls should be imposed when installing wells in contact with clayey units that form the base of the aquifer. Extracted groundwater consists of a mixture of (1) groundwater of relatively low salinity that circulates in the aquifer and (2) an extreme member with salinity different to seawater contained mainly in formations that have low permeability, which limits the aquifer underneath. The geochemistry of carbonates and cation-exchange reactions (both direct and reverse) control the concentration of Ca, Mg, Na, and HCO3, as well as pH values. The concentrations of dissolved trace elements (F, Li, Ba, Sr) suggest that the extreme saline member is different from the average seawater composition. A distinction between the salinization caused by farming practices and that blamed on seawater is defined by the use of NO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • ACSA (Ariel Construcciones SA) (1969) Estudio geohidrológico completo de los acuíferos del Valle de Santo Domingo, Baja California Sur. Informe técnico T-1. Secretaría de Agricultura y Recursos Hidráulicos, México

  • Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution. Balkema, Rotterdam

  • Bear J, Dagan G (1962) The steady interface between two immiscible fluids in a two-dimensional field of flow. Hydraulic Lab, Technion, Haifa Israel, IASH, P,N. Prog. Report 2

  • Beekman HE (1991) Ion chromatography of fresh and salt water intrusions. PhD Thesis, Free University, Amsterdam

  • Beekman HE, Appelo D (1990) Ion chromatography of fresh-and salt-water displacement: laboratory experiments and multicomponent transport modeling. J Cont Hydrol 7:21–37

    Article  Google Scholar 

  • Calvache ML, Pulido-Bosch A (1994) Modeling the effects of salt-water intrusion dynamics for a coastal karstified block connected to a detrital aquifer. Groundwater 32(5):767–771

    CAS  Google Scholar 

  • Calvache ML, Pulido-Bosch A (1997) Effects of geology and human activity on the dynamics of salt-water intrusion in three aquifers in southern Spain. Environ Geol 30:215–223

    Article  Google Scholar 

  • Chapelle FH, Knobel LL (1983) Aqueous geochemistry and the exchangeable cation composition of glauconite in the Aquia aquifer, Maryland. Groundwater 21:343–352

    CAS  Google Scholar 

  • Chiocchini U, Gisotti G, Macioce A, Manna F, Bolasco A, Lucarini C (1997) Environmental geology problems in the Tyrrhenian coastal area of Santa Marinella, province of Rome, central Italy. Environ Geol 32(1):1–8

    Article  Google Scholar 

  • Cserna de Z (1989) An outline of the geology of Mexico. In: The geology of North America: an overview, ch 9. Geol Soc Am Bull A, pp 233–264

  • Custodio E, Llamas RM (1983) Hidrología subterránea, 2nd edn. Omega, Barcelona

  • DESISA (Desarrollo y Sistemas S A) (1997) Actualización del estudio geohidrológico del Valle de Santo Domingo, Baja California Sur. Informe técnico para Comisión Nacional del Agua

  • Díaz-Jiménez G (1981) La sobreexplotación al acuífero del valle de Santo Domingo, BCS, sus consecuencias y posibles soluciones. MSc Thesis, Colegio Posgraduados Chapingo, México

  • Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico city. J Hydrol 258(1–24)

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice–Hall, Englewood Cliffs

  • Giménez E, Morell I (1997) Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environ Geol 29:118–131

    Article  Google Scholar 

  • Glover RE (1959) The pattern of fresh water flow in a coastal aquifer. J Geophys Res 64:457–459

    Google Scholar 

  • Graniel-Castro E, Cardona A, Carrillo-Rivera JJ (1999) Hidrogeoquímica en el acuífero calcáreo de Mérida Yucatán; elementos traza. Ingeniería Hidráulica México 14(3):19–28

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Water-Supply Paper 2254

  • Korom SF (1992) Natural denitrification in the unsaturated zone: a review. Water Resour Res 28(6):1657–1668

    CAS  Google Scholar 

  • Lambrakis N, Kallergis G (2001) Reaction of subsurface coastal aquifers to climate and land use changes in Greece; modeling of groundwater refreshening patterns under natural recharge conditions. J Hydrol 245:19–31

    CAS  Google Scholar 

  • Lawrence AR, Lloyd JW, Marsh JM (1976) Hydrochemistry and groundwater mixing in part of the Lincolnshire limestone aquifer, England. Groundwater 14:12–20

    Google Scholar 

  • Lloyd JW, Heathcotte JA (1985) Natural inorganic hydrochemistry in relation to groundwater. Clarendon Press, Oxford

  • Manzano M, Custodio E (1998) Origen de las aguas salobres en sistemas acuíferos deltaicos: Aplicación de la teoría de la cromatografía iónica al acuífero del Delta del Llobregat. Procc IV Congreso Latinoamericano de Hidrología Subterránea, Montevideo, Uruguay, pp 973–996

  • Martínez DE, Bocanegra EM (2002) Hydrogeochemistry and cation-exchange processes in the coastal aquifer of Mar Del Plata, Argentina. Hydrogeol J 10(3):393–408

    Article  Google Scholar 

  • Mina UF (1957) Bosquejo geológico del territorio sur de la Baja California. Asoc Mex Geol Petrol IX:139–269

    Google Scholar 

  • Moran-Zenteno D (1994) The geology of the Mexican Republic. Am Assoc Petrol Geol Studies in Geology, no 39, USA

  • Nordstrom DK, Ball JW, Donahoe RJ, Whittemore D (1989) Groundwater chemistry and water–-rock interactions at Stripa. Geochim Cosmochim Acta 53:1727–1740

    Google Scholar 

  • Ortlieb L (1991) Quaternary shorelines along the northeastern Gulf of California, Geochronological data and neotectonic implications. In: Pérez-Segura E, Jacques-Ayala C (eds) Studies of Sonora geology. Geol Soc Am Spec Paper 254:95–120

    Google Scholar 

  • Parkhurst DL (1995) User’s guide to PHREEQC: a computer program for speciation, reaction-path, advective-transport and inverse geochemical calculations. US Geol Surv Water-Res Invest Rep 95-4227

  • Petalas CP, Diamantis IB (1999) Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece. Hydrogeol J 7(3):305–316

    Article  Google Scholar 

  • Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinization. CRC Press, Boca Raton

  • Rivera A, Ledoux E, Sauvagnac S (1990) A compatible single-phase/two-phase numerical model. 2. Application to a coastal aquifer in Mexico. Ground Water 28(2):215–223

    Google Scholar 

  • Rodvang SJ, Simpkins WW (2001) Agricultural contaminants in Quaternary aquitards: a review of occurrence and fate in North America. Hydrogeol J 9(1):44–59

    CAS  Google Scholar 

  • Sadeg AS, Karahanoðlu N (2001) Numerical assessment of seawater intrusion in the Tripoli region, Libya. Environ Geol 40:1151–1168

    Article  CAS  Google Scholar 

  • Sakr S (1999) Validity of a sharp-interface model in a confined coastal aquifer. Hydrogeol J 7(2):155–160

    Article  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10(1):18–39

    Article  CAS  Google Scholar 

  • Schmorak S (1967) Saltwater encroachment in the Coastal Plain of Israel. Int Assoc Sci Hydrol Symp 72:305–318

    Google Scholar 

  • Steinich B, Escolero O, Marín LE (1998) Salt-water intrusion and nitrate contamination in the Valley of Hermosillo and El Sahuaral coastal aquifers, Sonora, Mexico. Hydrogeol J 6(4):518–526

    Article  Google Scholar 

  • Stiff HA (1951) The interpretation of chemical water by means of patterns. J Petrol Technol 3:15–17

    Google Scholar 

  • Stuyfzand PJ (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol J 7(1):15–27

    Article  Google Scholar 

  • TMI (Técnicas Modernas de Ingeniería, SA) (1979) Estudio Integral para la rehabilitación del Valle de Santo Domingo, Estado de Baja California Sur. Informe técnico. Secretaría de Agricultura y Recursos Hidráulicos

  • Zhou X, Chen M, Ju X, Ning X, Wang J (2000) Numerical simulation of sea water intrusion near Beihai, China. Environ Geol 40(1–2):223–233

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Santo Domingo Irrigation District personnel for allowing access to information files and well sites in the study area; to Gerencia de Aguas Subterráneas, CNA, for the financial support provided through a contract to Desarrollo y Sistemas SA; help during some stages of the investigation from Ing. Octavio del Conde and Ing. Juan Pablo del Conde is also appreciated. We also thank the Earth Sciences Water and Soil Chemistry Laboratory staff of Facultad de Ingeniería-UASLP for the water chemical analyses. Related investigations were partially supported by CONACyT and the Academic Exchange Program 2003 UNAM-UASLP (projects G-0705, G-0706, G-0707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cardona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardona, A., Carrillo-Rivera, J.J., Huizar-Álvarez, R. et al. Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California Sur, Mexico. Env Geol 45, 350–366 (2004). https://doi.org/10.1007/s00254-003-0874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-003-0874-2

Keywords

Navigation