Skip to main content

Advertisement

Log in

Oxygen deficient perovskites in the system CaSiO3–CaAlO2.5 and implications for the Earth’s interior

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Oxygen deficient perovskites of the system CaSiO3–CaAlO2.5 have been synthesised at high-pressure and -temperature conditions relevant to the Earth’s transition zone in order to investigate their stabilities in the Earth’s mantle and determine structural properties associated with vacancy incorporation. Two polysomes of thermodynamically stable defect perovskites with Ca(Al0.4Si0.6)O2.8 and Ca(Al0.5Si0.5)O2.75 stoichiometry have been identified. The ordering of oxygen defects into pseudo-cubic (111) layers results in well-ordered ten- or eightfold superstructures, respectively. At all other compositions examined, a metastable formation of perovskites has been observed instead, which are assumed to grow initially disordered. These are now characterised by tiny domains, formed due to subsequent ordering of vacancies along various pseudo-cubic {111} layers. Both ordered defect perovskites show a large P–T stability field ranging from about 9–18 GPa and 4–12 GPa, respectively. Microstructural TEM analyses revealed the presence of growth and ferroelastic twins, which indicate a phase transition from rhombohedral to monoclinic symmetry during quenching. Electron energy loss spectroscopy of Si and Al K edges point at the presence of tetrahedral, octahedral and maybe some pentacoordinated silicon, whereas aluminium is predominantly octahedrally coordinated with minor fractions in lower coordination. Observed properties are interpreted in terms of a new structural model, explaining the observed phase transition and formation of different twin laws as well as giving reasons for the development of such large superstructures. With respect to phase relations of the transition zone, the potential occurrence of such defect perovskites in the Earth’s interior is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akber SB (2003) A theoretical study of perovskite solid solutions: towards an interpretation of seismic tomographic data. Ph.D. Thesis, University of California, Berkeley

  • van Aken PA, Sharp TG, Seifert F (1998) Electron-beam induced amorphization of stishovite: silicon- coordination change observed using Si K-edge extended electron energy-loss fine structure. Phys Chem Minerals 25:83–93

    Article  Google Scholar 

  • Andrault D, Neuville DR, Flank AM, Wang Y (1998) Cation sites in Al-rich MgSiO3 perovskites. Am Mineral 83:1045–1053

    Google Scholar 

  • Andrault D, Bolfan-Casanova N, Guignot N (2001) Equation of state of lower mantle (Al,Fe)MgSiO3 perovskite. Earth Planet Sci Lett 193:501–508

    Article  Google Scholar 

  • Bläß UW, Langenhorst F, Boffa-Ballaran T, Seifert F, Frost DJ, McCammon CA (2004) A new oxygen-deficient perovskite phase Ca(Fe0.4Si0.6)O2.8 and phase relations along the join CaSiO3−CaFeO2.5 at transition zone conditions. Phys Chem Minerals 31:52–65

    Article  Google Scholar 

  • van Bokhoven JA, Sambe H, Ramaker DE, Koningsberger DC (1999) Al K-edge near-edge X-ray absorption fine structure (NEXAFS) study on the coordination structure of aluminum in minerals and Y zeolites. J Phys Chem B 103:7557–7564

    Article  Google Scholar 

  • van Bokhoven JA, Nabi T, Sambe H, Ramaker DE, Koningsberger DC (2001) Interpretation of the Al K- and L II/III-edges of aluminium oxides: differences between tetrahedral and octahedral Al explained by different local symmetries. J Phys Condens Matter 13:10247–10260

    Article  Google Scholar 

  • Daniel I, Cardon H, Fiquet G, Guyot F, Mezouar M (2001) Equation of state of Al-bearing perovskite to lower mantle pressure conditions. Geophys Res Lett 28:3789–3792

    Article  Google Scholar 

  • Dobson D (2003) Oxygen ionic conduction in MgSiO3 perovskite. Phys Earth Planet Inter 139:55–64

    Article  Google Scholar 

  • Egerton RF (1996) Electron energy loss spectroscopy in the electron microscope, 2nd edn. Plenum, New York, pp 485

    Google Scholar 

  • Fitz Gerald JD, Ringwood AE (1991) High-pressure rhombohedral perovskite phase Ca2AlSiO5.5. Phys Chem Minerals 18:40–46

    Article  Google Scholar 

  • Frost DJ, Langenhorst F (2002) The effect of Al2O3 on Fe–Mg partitioning between magnesiowüstite and magnesium silicate perovskite. Earth Planet Sci Lett 199:227–241

    Article  Google Scholar 

  • Gasparik T, Wolf K, Smith CM (1994) Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. Am Mineral 79:1219–1222

    Google Scholar 

  • Hirose K (2002) Phase transitions in pyrolitic mantle around 670 km depth: implications for upwelling of plumes from the lower mantle. J Geophys Res 107(B4):2078, doi:10.1029/2001JB000597

    Article  Google Scholar 

  • Hirose K, Fei YW (2002) Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim Cosmochim Acta 66:2099–2108

    Article  Google Scholar 

  • Hirose K, Fei YW, Ma YZ, Mao HK (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397:53–56

    Article  Google Scholar 

  • Kim YH, Ming LC, Manghnani MH (1994) High-pressure phase-transformations in a natural crystalline diopside and synthetic CaMgSi2O6 glass. Phys Earth Planet Inter 83:67–79

    Article  Google Scholar 

  • Larson AC, von Dreele RB (1994) General structure analysis system (GSAS). Los Alamos Natl Lab Rep LAUR 86–748, Los Alamos, USA

    Google Scholar 

  • Lauterbach S, McCammon CA, van Aken P, Langenhorst F, Seifert F (2000) Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component of the lower mantle. Contrib Mineral Petrol 138:17–26

    Article  Google Scholar 

  • Li DE, Bancroft GM, Fleet ME, Feng XH, Pan Y (1995) Al K-edge XANES spectra of aluminosilicate minerals. Am Mineral 80:432–440

    Google Scholar 

  • Liu LG (1978) New high-pressure phase of Ca2Al2SiO7 and implications for Earth’s interior. Earth Planet Sci Lett 40:401–406

    Article  Google Scholar 

  • McCammon C (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387:694–696

    Article  Google Scholar 

  • Navrotsky A (1999) Mantle geochemistry—a lesson from ceramics. Science 284:1788–1789

    Article  Google Scholar 

  • Ross NL, Angel RJ, Seifert F (2002) Compressibility of brownmillerite (Ca2Fe2O5): effect of vacancies on the elastic properties of perovskites. Phys Earth Planet Inter 129:145–151

    Article  Google Scholar 

  • Salje EKH (1993) Phase transitions in ferroelastic and co-elastic crystals. Cambridge University Press, Cambridge

    Google Scholar 

  • Sharp T, Wu Z, Seifert F, Poe B, Doerr M, Paris E (1996) Distinction between six- and fourfold coordinated silicon in SiO2 polymorphs via electron loss near edge structure (ELNES) spectroscopy. Phys Chem Minerals 23:17–24

    Article  Google Scholar 

  • Takafuji N, Yagi T, Miyajima N, Sumita T (2002) Study on Al2O3 content and phase stability of aluminous-CaSiO3 perovskite at high pressure and temperature. Phys Chem Minerals 29:532–537

    Article  Google Scholar 

  • Takahashi E (1986) Melting of a dry peridotite KLB-1 up to 14 GPa—Implications on the origin of peridotitic upper mantle. J Geophys Res 91(B9):9367–9382

    Article  Google Scholar 

  • Wang YB, Weidner DJ (1994) Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle. Geophys Res Lett 21:895–898

    Article  Google Scholar 

  • Wu ZY, Seifert F, Poe B, Sharp T (1996) Multiple-scattering calculations for SiO2 polymorphs: a comparison to ELNES and XANES spectra. J Phys Condens Matter 8:3323–3336

    Article  Google Scholar 

  • Xu YS, McCammon C (2002) Evidence for ionic conductivity in lower mantle (Mg,Fe) (Si,Al)O3 perovskite. J Geophys Res 107(B10):2251, doi:10.1029/2001JB000677

    Article  Google Scholar 

  • Zhang JZ, Weidner DJ (1999) Thermal equation of state of aluminum-enriched silicate perovskite. Science 284:782–784

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Deutsche Forschungsgemeinschaft (grants SE 302/24–1 and /24–2) and Fonds der Chemischen Industrie to F. Seifert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. W. Bläß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bläß, U.W., Langenhorst, F., Frost, D.J. et al. Oxygen deficient perovskites in the system CaSiO3–CaAlO2.5 and implications for the Earth’s interior. Phys Chem Minerals 34, 363–376 (2007). https://doi.org/10.1007/s00269-007-0154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-007-0154-x

Keywords

Navigation