Skip to main content
Log in

New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Surface mass balance (SMB) distribution and its temporal and spatial variability is an essential input parameter in mass balance studies. Different methods were used, compared and integrated (stake farms, ice cores, snow radar, surface morphology, remote sensing) at eight sites along a transect from Terra Nova Bay (TNB) to Dome C (DC) (East Antarctica), to provide detailed information on the SMB. Spatial variability measurements show that the measured maximum snow accumulation (SA) in a 15 km area is well correlated to firn temperature. Wind-driven sublimation processes, controlled by the surface slope in the wind direction, have a huge impact (up to 85% of snow precipitation) on SMB and are significant in terms of past, present and future SMB evaluations. The snow redistribution process is local and has a strong impact on the annual variability of accumulation. The spatial variability of SMB at the kilometre scale is one order of magnitude higher than its temporal variability (20–30%) at the centennial time scale. This high spatial variability is due to wind-driven sublimation. Compared with our SMB calculations, previous compilations generally over-estimate SMB, up to 65% in some areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alley RB (1988) Concerning the deposition and diagenesis of strata in polar firn. J Glaciol 34(118):283–290

    Google Scholar 

  • Alley RB, Saltzman ES, Cuffey KM, Fitzpatrick (1990) Summertime formation of depth hoar in central Greenland. Geophys Res Lett 17(12):2,393–2,396

    Google Scholar 

  • Ball FK (1960) Winds on the ice slopes of Antarctica. In: Antarctic meteorology. Pergamon Press, New York, pp 9–16

    Google Scholar 

  • Bintanja R (1998) The contribution of snowdrift sublimation to the surface mass balance of Antarctica. Ann Glaciol 27:251–259

    Google Scholar 

  • Bintanja R (1999) On the glaciological, meteorological, and climatological significance of Antarctic blue ice areas. Rev Geophys 37(3):337–359

    Article  Google Scholar 

  • Bintanja R, Lilienthal H, Tug H (2001) Observations of snowdrift over Antarctic snow and blue-ice surfaces. Ann Glaciol 32:168–174

    Google Scholar 

  • Bintanja R, Reijmer CH (2001) A simple parameterization for snowdrift sublimation over Antarctic snow surface. J Geophys Res 106(D23):31,739–31,748

    Google Scholar 

  • Black HP, Budd W (1964) Accumulation in the region of Wilkes, Wilkes Land, Antarctica. J Glaciol 5(37):3–15

    Google Scholar 

  • Bromwich DH (1988) Snowfall in high southern latitudes. Rev Geophys 26(1):149–168

    Google Scholar 

  • Bromwich DH, Weaver CJ (1983) Latitudinal displacement from main moisture source controls δ18O of snow in coastal Antarctica. Nature 30:145–147

    Google Scholar 

  • Cagnati A, Valt M, Casacchia R, Salvatori R (2003) Snowcover in Antarctica: physical and morphological features of surface layers. Terra Antartica Rep 8:5–10

    Google Scholar 

  • Cullather RI, Bromwich DH, Van Woert ML (1998) Spatial and temporal variability of Antarctic precipitation from atmospheric methods. J Climate 11:334–367

    Article  Google Scholar 

  • Ekaykin AA, Lipenkov VYA, Kuzmina IN, Petit JR, Masson-Delmotte V, Johnsen SJ. The changes in isotope composition and accumulation of snow at Vostok Station over the past 200 years. Ann Glaciol 39 (in press)

  • Fortuin JPF, Oerlemans J (1990) The parameterization of the annual surface temperature and mass balance of Antarctica. Ann Glaciol 14:78–84

    Google Scholar 

  • Frezzotti M, Flora O (2002) Ice dynamics and climatic surface parameters in East Antarctica from Terra Nova Bay to Talos Dome and Dome C: ITASE Italian Traverses. Terra Antartica 9(1):47–54

    Google Scholar 

  • Frezzotti M, Gandolfi S, Urbini S (2002a) Snow megadune in Antarctica: sedimentary structure and genesis. J Geophys Res 107(D18):4,344. Doi: 10.1029/2001JD000673

    Google Scholar 

  • Frezzotti M, Gandolfi S, La Marca F, Urbini S (2002b) Snow dune and glazed surface in Antarctica: new field and remote sensing data. Ann Glaciol 34:81–88

    Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M Spatial and temporal variability of the surface mass balance in East Antarctica from traverse data. J Glaciol (in press)

  • Fujii Y, Kusunoki K (1982) The role of sublimation and condensation in the formation of ice sheet surface at Mizuho Station, Antarctica. J Geophys Res 87(C6):4,293–4,300

    Google Scholar 

  • Gallée H (1998) Simulation of blowing snow over the Antarctic ice sheet. Ann Glaciol 26:203–206

    Google Scholar 

  • Gallée H, Guyomarch G, Brun E (2001) Impact of snow drift on the Antarctic Ice Sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary-Layer Meteorol 99:1–19

    Article  Google Scholar 

  • Genthon C, Braun A (1995) ECMWF analyses and predictions of surface climate of Greenland and Antarctica. J Climate 8(10):2,324–2,332

    Google Scholar 

  • Genthon C, Krinner G (1998) Convergence and disposal of energy and moisture on the Antarctic polar cap from ECMWF reanalyses and forecasts. J Climate 11:1,703–1,716

    Google Scholar 

  • Genthon C, Krinner G (2001) The Antarctic surface mass balance and systematic biases in GCMs. J Geophys Res 106:20,653–20,664

    Google Scholar 

  • Giovinetto MB, Bromwich DH, Wendler G (1992) Atmospheric net transport of water vapor and latent heat across 70°S. J Geophys Res 97(D1):917–930

    Google Scholar 

  • Giovinetto MB, Waters NM, Bentley CR (1990) Dependence of Antarctic surface mass balance on temperature, elevation, and distance to open ocean. J Geophys Res 95(D4):3,517–3,531

    Google Scholar 

  • Giovinetto MB, Zwally HJ (2000) Spatial distribution of net surface accumulation on the Antarctic ice sheet. Ann Glaciol 3:171–178

    Google Scholar 

  • Goodwin ID, Higham M, Allison I, Jaiwen R (1994) Accumulation variation in eastern Kemp Land, Antarctica. Ann Glaciol 20:202–206

    Google Scholar 

  • Gow AJ (1965) On the accumulation and seasonal stratification of snow at the South Pole. J Glaciol 5:467–477

    Google Scholar 

  • Jouzel J, Merlivat L, Petit JR, Lorius C (1983) Climatic information over the last century deduced from a detailed isotopic record in the South Pole snow. J Geophys Res 88(C4):2,693–2,703

    Google Scholar 

  • King JC, Anderson PS, Mann GW (2001) The seasonal cycle of sublimation at Halley, Antarctica. J Glaciol 47(156):1–8

    Google Scholar 

  • King JC, Turner J (1997) Antarctic meteorology and climatology. Cambridge University Press, Atmospheric and Space Science Series, Cambridge, p 408

  • Kobayashi S, Ishida T (1979) Interaction between wind and snow surface. Boundary Layer Meteorol 16:35–47

    Google Scholar 

  • Kobayashi S, Ishikawa N, Ohata T (1985) Katabatic snow storms in stable atmospheric conditions at Mizuho Station, Antarctica. Ann Glaciol 6:229–231

    Google Scholar 

  • Kodama Y, Wendler G, Gosink J (1985) The effect of blowing snow on katabatic winds in Antarctica. Ann Glaciol 6:59–62

    Google Scholar 

  • Koerner RM (1971) A stratigraphic methods of determining the snow accumulation rate at Plateau Station, Antarctica, and application to South Pole—Queen Maud Land traverse 2, 1965–1966. In: Crary AP (ed) Antarctic snow and ice studies II. American Geophysical Union, Washington. Antarctic Res Ser 16:225–238

    Google Scholar 

  • Liston GE, Winther JG, Bruland O, Elvehoy H, Sand K, Karlof L (2000) Snow and blue-ice distribution patterns on the coastal Antarctic ice sheet. Antarctic Sci 12(1):69–79

    Google Scholar 

  • Loewe F (1970) Contributions to the glaciology of the Antarctic. J Glaciol 2(19):657–665

    Google Scholar 

  • Magand O, Frezzotti M, Pourchet M, Stenni B, Genoni L, Fily M Climate variability along latitudinal and longitudinal transects in East Antarctica. Ann Glaciol 39 (in press)

  • Mayewski PA, Goodwin ID (1999) Antarctic’s role pursued in global climate change. Eos Trans 80:398–400

    Google Scholar 

  • Muszynski I, Birchfield GE (1985) The dependence of Antarctic accumulation rates on surface temperature and elevation. Tellus 37A:204–208

    Google Scholar 

  • Noone D, Turner J, Mulvaney R (1999) Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. J Geophys Res 104(D16):19,191–19,211

    Google Scholar 

  • Parish TR, Bromwich DH (1991) Continental scale of the Antarctic katabatic wind regime. J Climate 4(2):135–146

    Article  Google Scholar 

  • Pettré P, Pinglot JF, Pourchet M, Reynaud L (1986) Accumulation in Terre Adélie, Antarctica: effect of meteorological parameters. J Glaciol 32:486–500

    Google Scholar 

  • Picciotto E, Crozaz G, De Breuk W (1971) Accumulation on the south Pole-Queen Maud Land Traverse, 1964–1968. In: Crary AP (ed) Antarctic snow and ice studies II. American Geophysical Union, Washington. Antarctic Res Series 16:257–291

    CAS  Google Scholar 

  • Pomeroy JW (1989) A process-based model of snow drifting. Ann Glaciol 13:237–240

    Google Scholar 

  • Pourchet M, Bartarya SK, Maignan M, Jouzel J, Pinglot JF, Aristarain A, Furdada G, Kotlyakov VM, Mosley-Thompson E, Preiss N, Young NW (1997) Distribution and fall out of 137Cs and other radionuclides over Antarctica. J Glaciol 43(145):435–445

    CAS  Google Scholar 

  • Proposito M, Becagli S, Castellano E, Flora O, Gragnani R, Stenni B, Traversi R, Udisti R, Frezzotti M (2002) Chemical and isotopic snow variability along the 1998 ITASE traverse from Terra Nova Bay to DC (East-Antarctica). Ann Glaciol 35:187–194

    Google Scholar 

  • Rémy F, Testut L, Legrésy B (2002) Random fluctuations of snow accumulation over Antarctica and their relation to sea level change. Climate Dyn 19:267–276

    Article  Google Scholar 

  • Richardson C, Aarholt E, Hamran SE, Holmlund P, Isaksson E (1997) Spatial snow distribution mapped by radar. J Geophys Res 102(B9):20,343–20,353

    Google Scholar 

  • Rignot E, Thomas RH (2002) Mass balance of polar ice sheets. Science 297:1,502–1,506

    Google Scholar 

  • Robin G de Q (1977) Ice cores and climate change. Philos Trans R Soc Lond Ser B 280:143–168

    Google Scholar 

  • Stearns CR, Weidner GA (1993) Sensible and latent heat flux estimates in Antarctica. In: Bromwich DH, Stearns CR (eds) Antarctic meteorology and climatology: studies based on automatic weather stations. American Geophysical Union, Washington. Antarctic Res Ser 61:109–138

    Google Scholar 

  • Stuart AW, Heine AJ (1961) Glaciological work of the 1959–1960 US Victoria Land Traverse. J Glaciol 997–1002

  • Takahashi S, Naruse R, Masayoshi N, Mae S (1988) A bare ice field in East Queen Maud Land, Antarctica, caused by horizontal divergence of snow. Ann Glaciol 11:150–160

    Google Scholar 

  • Turner J, Connolley WM, Leonard S, Marshal GJ, Vaughan DG (1999) Spatial and temporal variability of net snow accumulation over the Antarctic from ECMWF re-analysis project data. Int J Climatol 19:697–724

    Article  Google Scholar 

  • Turner J, Lachlan-Cope TA, Marshall GJ, Morris EM, Mulvaney R, Winter W (2002) Spatial variability of Antarctic Peninsula net surface mass balance. J Geophys Res 107(D13):4,173. DOI 10.1029/2001JD000755

    Google Scholar 

  • van der Broeke M (1997) Spatial and temporal variation of sublimation on Antarctica: result of a high-resolution general circulation model. J Geophys Res 102:29,765–29,777

    Google Scholar 

  • van den Broeke MR, Winther JG, Isaksson E, Pinglot JF, Karlof L, Eiken T, Conrads L (1999) Climate variables along a traverse line in Dronning Maud Land, East Antarctica. J Glaciol 45(150):295–302

    Google Scholar 

  • van Lipzig NPM, van Meijgaard E, Oerlemans J (2002) The spatial and temporal variability of the surface mass balance in Antarctica: result from a regional atmospheric climate model. Int J Climatol 22:1,197–1,217

    Google Scholar 

  • Vaughan DG, Bamber JL, Giovinetto M, Russell J, Cooper PR (1999) Reassessment of net surface mass balance in Antarctica. J Climate 12:933–946

    Article  Google Scholar 

  • Watanabe O (1978) Distribution of surface features of snow cover in Mizuho Plateau. Mem Natl Inst Polar Res Spec Issue 7:154–181

    CAS  Google Scholar 

  • Wendler G, André JC, Pettré P, Gosink J, Parish T (1993) Katabatic winds in Adélie Coast. In: Bromwich DH, Stearns CR (eds) Antarctic meteorology and climatology: studies based on automatic weather stations. American Geophysical Union, Washington. Antarctic Res Ser 61:23–46

    Google Scholar 

  • Whillans IM (1975) Effect of inversion winds on topographic detail and mass balance on inland ice sheets. J Glaciol 14(70):85–90

    Google Scholar 

  • Young NW, Pourchet M, Kotlyakov VM, Korolev PA and Dyugerov MB (1982) Accumulation distribution in the IAGP area, Antarctica: 90°E–150°E. Ann Glaciol 3:333–338

    Google Scholar 

  • Zibordi G, Frezzotti M (1996) Orographic clouds in north Victoria Land from AVHRR images. Polar rec 32(183):317–324

    Google Scholar 

Download references

Acknowledgements

Research was carried out in the framework of the Project on Glaciology of the PNRA-MIUR and financially supported by PNRA through a co-operation agreement with ENEA Roma. This work is a contribution by the Italian-France branch of the ITASE project and is also supported by the French Polar Institute (IPEV). It is an associate program to the ‘European Project for Ice Coring in Antarctica’ (EPICA), a joint ESF (European Science Foundation)/UE scientific program. The authors wish to thank all members of the traverse team, the participants in PNRA 1998/99 who assisted at the Zucchelli Station at TNB and Concordia Station and everyone in Italy and France who helped to prepare the traverse. Thanks are due to M. Giovinetto and D. Vaughan, who provided SMB compilations, V. Masson-Delmotte, E. Isaksson and other anonymous reviewers whose comments and editing helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Frezzotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frezzotti, M., Pourchet, M., Flora, O. et al. New estimations of precipitation and surface sublimation in East Antarctica from snow accumulation measurements. Climate Dynamics 23, 803–813 (2004). https://doi.org/10.1007/s00382-004-0462-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-004-0462-5

Keywords

Navigation