Skip to main content
Log in

Equivocal carbonatite markers in the mantle xenoliths of the Patagonia backarc: the Gobernador Gregores case (Santa Cruz Province, Argentina)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Amphibole ± phlogopite ± apatite-bearing mantle xenoliths at Gobernador Gregores display modal, bulk-rock and phase geochemical characteristics held as indicators of carbonatitic metasomatism. However, part of these xenoliths has high TiO2/Al2O3 and those displaying the most pronounced carbonatitic geochemical markers modally trend towards harzburgite. Bulk-rock, clinopyroxene and amphibole show Zr, Hf and Ti negative anomalies, which increase at decreasing Na2O and high field strength elements (HFSE) concentrations. Steady variation trends between xenoliths which have and do not have carbonatitic characteristics suggest a control by reactive porous flow of only one agent, inferred to be initially a ne-normative hydrous basalt (because of the presence of wehrlites) evolving towards silica saturation. Variation trends exhibit cusps when amphibole appears in the mode. Appearance of amphibole may explain the Ti anomaly variations, but not those of Zr and Hf. Numerical modelling [Plate Model (Vernières et al. in J Geophys Res 102:24771–24784, 1997)] gives results consistent with the observed geochemical features by assuming the presence of loveringite. Modest HFSE anomalies in the infiltrating melt may be acquired during percolation in the garnet-facies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a–d
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adam J, Green TH (2001) Experimentally determined partition coefficients for minor and trace elements in peridotite minerals and carbonatitic melts, and their relevance to natural carbonatites. Eur J Mineral 13:815–827

    Article  CAS  Google Scholar 

  • Adam J, Green TH, Sie S, Ryan CG (1997) Trace element partitioning between aqueous fluids, silicate melts and minerals. Eur J Mineral 9:569–584

    CAS  Google Scholar 

  • Ayers JC, Eggler DH (1995) Partitioning of elements between silicate melt and H2O–NaCl fluids at 1.5 and 2.0 GPa pressure: Implications for mantle metasomatism. Geochim Cosmochim Acta 59:4237–4246

    Article  CAS  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827

    Article  CAS  Google Scholar 

  • Baker J, Chazot G, Menzies M, Thirlwall M (1998) Metasomatism of the shallow mantle beneath Yemen by the Afar plume—implications for mantle plumes, flood volcanism and intraplate volcanism. Geology 26:431–434

    Article  CAS  Google Scholar 

  • Bedini RM, Bodinier J-L, Dautria J-M, Morten L (1997) Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from East African Rift. Earth Planet Sci Lett 153:67–83

    Article  CAS  Google Scholar 

  • Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371

    Article  CAS  Google Scholar 

  • Blundy JD, Wood BJ (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  CAS  Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel-lherzolite solidus. Earth Planet Sci Lett 160:493–504

    Article  CAS  Google Scholar 

  • Bodinier J-L, Merlet C, Bedini RM, Simien F, Remaïdi M, Garrido CJ (1996) Distribution of niobium, tantalum and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim Cosmochim Acta 60:545–550

    Article  CAS  Google Scholar 

  • Bodinier J-L, Menzies MA, Shimizu N, Frey A, McPherson E (2004) Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt-harzburgite reaction. J Petrol 45:299–320

    Article  CAS  Google Scholar 

  • Brey GP, Köhler TP (1990) Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    CAS  Google Scholar 

  • Chalot-Prat F, Arnold M (1999) Immiscibility between calciocarbonatitic and silicate melts and related wall rock reactions in the upper mantle: a natural case study from Romanian mantle xenoliths. Lithos 46:627–659

    Article  CAS  Google Scholar 

  • Chazot G, Menzies M, Harte B, Mattey D (1994) Carbonatite metasomatism and melting of the Arabian lithosphere: evidence from oxygen isotopes and trace element composition of spinel lherzolites. Mineral Mag 58A:207–208

    Google Scholar 

  • Chazot G, Menzies M, Harte B (1996) Determination of partition coefficients between apatite, clinopyroxene, amphibole, and melt in natural spinel lherzolites from Yemen: implications for wet melting of the lithospheric mantle. Geochim Cosmochim Acta 60:423–437

    Article  CAS  Google Scholar 

  • Dalton JA, Wood BJ (1993) The composition of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett 119:511–525

    Article  CAS  Google Scholar 

  • Dautria JM, Dupuy C, Takherist D, Dostal J (1992) Carbonate metasomatism in the lithospheric mantle: peridotitic xenoliths from a melilitic district of the Sahara basin. Contrib Mineral Petrol 111:37–52

    CAS  Google Scholar 

  • Foley SF, Barth MG, Jenner GA (2000) Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim Cosmochim Acta 64:933–938

    Article  CAS  Google Scholar 

  • Foley SF, Petibon CM, Jenner GA, Kjarsgaard BA (2001) High U/Th partitioning by clinopyroxene from alkali silicate and carbonatite metasomatism: an origin for Th/U disequilibrium in mantle melts? Terra Nova 13:104–109

    Article  CAS  Google Scholar 

  • Franzini M, Leoni L, Saitta M (1975) Revisione di una metodologia analitica per fluorescenza-X, basata sulla correzione completa degli effetti di matrice. Rend Soc It Mineral Petrol 31:365–379

    CAS  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346

    Article  CAS  Google Scholar 

  • Gorring ML, Kay SM (2000) Carbonatite metasomatized peridotite xenoliths from southern Patagonia: implications for lithospheric processes and Neogene plateau magmatism. Contrib Mineral Petrol 140:55–72

    Article  CAS  Google Scholar 

  • Gorring ML, Kay SM (2001) Mantle processes and sources of Neogene slab window magmas from Southern Patagonia, Argentina. J Petrol 42:1607–1094

    Article  Google Scholar 

  • Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120:347–359

    Article  CAS  Google Scholar 

  • Green TH, Pearson NJ (1987) An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim Cosmochim Acta 51:55–62

    Article  CAS  Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Article  CAS  Google Scholar 

  • Green TH, Adam J, Sie SH (1992) Trace element partitioning between silicate minerals and carbonatite at 25 Kbar and application to mantle metasomatism. Mineral Petrol 46:179–184

    CAS  Google Scholar 

  • Grégoire M, Moine BN, O’Reilly SY, Cottin JY, Giret A (2000a) Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean). J Petrol 41:477–509

    Article  Google Scholar 

  • Grégoire M, Lorand JP, O’Reilly SY, Cottin JY (2000b) Armalcolite-bearing, Ti-rich metasomatic assemblages in harzburgitic xenoliths from the Kerguelen Archipelago: implications for the oceanic mantle budget of high-field strength elements. Geochim Cosmochim Acta 64:673–694

    Article  Google Scholar 

  • Grégoire M, McInnes BIA, O’Reilly SY (2001) Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua, New Guinea. Part 2. Trace element characteristics of slab-derived fluids. Lithos 59:91–108

    Article  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    CAS  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166

    Article  CAS  Google Scholar 

  • Hill E, Wood BJ, Blundy JD (2000) The effect of Ca-Tschermak component on trace element partitioning between clinopyroxene and silicate melt. Lithos 52:203–215

    Article  Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473

    Article  CAS  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  CAS  Google Scholar 

  • Ionov DA (2004) Chemical variations in peridotite xenoliths from Vitim, Siberia: inferences for REE and Hf behaviour in the garnet-facies upper mantle. J Petrol 45:343–367

    Article  CAS  Google Scholar 

  • Ionov DA, Bodinier JL, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43:1–41

    Article  Google Scholar 

  • Jenner GA, Longerich HP, Jackson SE, Fryer BJ (1990) ICP-MS—a powerful tool for high-precision trace-element analysis in Earth sciences: evidence from analysis of selected U.S.G.S. reference samples. Chem Geol 83:133–148

    Article  CAS  Google Scholar 

  • Jenner JA, Foley SF, Jackson SE, Green TH, Fryer BJ, Longerich HP (1993) Determination of partition coefficients for trace elements in high pressure-temperature experimental run products by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). Geochim Cosmochim Acta 57:5099–5103

    Article  CAS  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in oceanic upper mantle: an ion microprobe study of diopsides in Abyssal Peridotites. J Geophys Res 95:2661–2678

    Google Scholar 

  • Kalfoun F, Ionov D, Merlet C (2002) HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth Planet Sci Lett 199:49–65

    Article  CAS  Google Scholar 

  • Kelemen PB, Dick HB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641

    Article  CAS  Google Scholar 

  • Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from mantle by focused flow of melt in dunite channels. Nature 375:747–753

    Article  CAS  Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    Article  CAS  Google Scholar 

  • Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240

    Article  CAS  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874

    Article  CAS  Google Scholar 

  • Koga KT, Kelemen PB, Shimizu N (2001) Petrogenesis of the crust-mantle transition zone and the origin of lower crustal wehrlite in the Oman ophiolite. Geochem Geophys Geosyst 2: paper number 2000GC000132

    Article  Google Scholar 

  • Köhler TP, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60 Kbar with applications. Geochim Cosmochim Acta 54:2375–2388

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Laurora A, Mazzucchelli M, Rivalenti G, Vannucci R, Zanetti A, Barbieri MA, Cingolani CA (2001) Metasomatism and melting in carbonated peridotite xenoliths from the mantle wedge: the Gobernador Gregores case (Southern Patagonia). J Petrol 42:69–87

    Article  CAS  Google Scholar 

  • Leibniz GW (1704) Nouveaux essais sur l’entendement humain, IV, 16, Galtier Paris

  • Leoni L, Saitta M (1976) X-ray fluorescence analysis of 29 trace elements in rock and mineral standards. Rend Soc It Mineral Petrol 32:497–510

    CAS  Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning on the Tinaquillo lherzolite solidus at 1.5 GPa. Phys Earth Planet Interiors 139:129–147

    Article  CAS  Google Scholar 

  • Menzies MA, Rogers N, Tindle A, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere—lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic, London, Geology Series, pp 313–364

  • Moine BN, Grégoire M, O’Reilly SY, Sheppard SMF, Cottin JY (2001) High field strength element fractionation in the Upper Mantle: evidence from amphibole-rich composite mantle xenoliths from the Kerguelen Islands (Indian Ocean). J Petrol 42:2145–2167

    Article  CAS  Google Scholar 

  • Neumann E-R, Wulff-Pedersen E (1997) The origin of highly silicic glass in mantle xenoliths from the Canary Islands. J Petrol 38:1513–1539

    Article  CAS  Google Scholar 

  • Oberti R, Vannucci R, Zanetti A, Tiepolo M, Brumm RC (2000) A crystal chemical re-evaluation of amphibole/melt and amphibole/clinopyroxene DTi values in petrogenetic studies. Am Miner 85:417–419

    Google Scholar 

  • Peslier AH, Francis D, Ludden J (2002) The lithospheric mantle beneath continental margins: melting and melt-rock reaction in Canadian Cordillera xenoliths. J Petrol 43:2013–2047

    Article  CAS  Google Scholar 

  • Qi Q, Taylor LA, Zhou XM (1995) Petrology and geochemistry of mantle peridotite xenoliths from SE China. J Petrol 36:55–79

    CAS  Google Scholar 

  • Raffone N, Zanetti A, Chazot G, Pin C, Vannucci R (2004) Genesis of Mg- and Fe-rich wehrlites in the lithospheric mantle beneath Ibalrhatene (Azrou, Mid Atlas, Morocco). J Petrol (submitted)

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    Article  CAS  Google Scholar 

  • Rivalenti G, Mazzucchelli M, Girardi VAV, Vannucci R, Barbieri MA, Zanetti A, Goldstein SL (2000) Composition and processes of the mantle lithosphere in northeastern Brazil and Fernando de Noronha: evidence from mantle xenoliths. Contrib Mineral Petrol 138:308–325

    Article  CAS  Google Scholar 

  • Rivalenti G, Mazzucchelli M, Laurora A, Cuffi SIA, Zanetti A, Vannucci R, Cingolani CA (2004) The backarc mantle lithosphere in Patagonia, South America. J South Am Earth Sci 17(1) (submitted)

  • Rudnick RL, McDonough WF, Chappell BC (1993) Carbonatite metasomatism in the northern Tanzanian mantle. Earth Planet Sci Lett 114:463–475

    Article  CAS  Google Scholar 

  • Salters VJM, Longhi JE, Bizimis M (2002) Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. G3 3:1–23

    Article  Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  CAS  Google Scholar 

  • Shaw CSJ (1999) Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 Gpa: further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contrib Mineral Petrol 135:114–132

    Article  CAS  Google Scholar 

  • Stalder R, Foley SF, Brey GP, Horn I (1998) Minel-acqueous fluid partitioning of trace elements at 900–1,200°C and 3.0 GPa: new experimental data for garnet, cpx and rutile and implications for mantle metasomatism. Geochim Cosmochim Acta 62:1781–1801

    Article  CAS  Google Scholar 

  • Stimac J, Hickmott D (1994) Trace element partition coefficients for ilmenite, orthopyroxene and pyrrhotite in rhyolite determined by micro-PIXE analysis. Chem Geol 117:313–330

    Article  CAS  Google Scholar 

  • Stosch H-G, Seck HA (1980) Geochemistry and mineralogy of two spinel peridotite suites from Dreiser Weiher, West Germany. Geochim Cosmochim Acta 44:457–470

    Article  CAS  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geol Soc Spec Publ 42:313–345

    Google Scholar 

  • Sweeney RJ, Green DH, Sie SH (1992) Trace and minor element partitioning between garnet and amphibole and carbonatitic melt. Earth Planet Sci Lett 113:1–14

    Article  CAS  Google Scholar 

  • Sweeney RJ, Prozesky V, Przybylowicz W (1995) Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18–46 Kbar pressure. Geochim Cosmochim Acta 59:3671–3683

    Article  CAS  Google Scholar 

  • Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in Ti-rich pargasite and kaersutite: crystal-chemical constraints and implications for natural systems. Earth Planet Sci Lett 176:185–201

    Article  CAS  Google Scholar 

  • Tiepolo M, Bottazzi P, Foley S, Oberti R, Vannucci R, Zanetti A (2001) Fractionation of Nb and Ta from Zr and Hf at Mantle Depths: the role of titanian pargasite and kaersutite. J Petrol 42:221–232

    Article  CAS  Google Scholar 

  • Tiepolo M, Oberti R, Vannucci R (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119

    Article  CAS  Google Scholar 

  • Vannucci R, Piccardo GB, Rivalenti G, Zanetti A, Rampone E, Ottolini L, Oberti R, Mazzucchelli M, Bottazzi P (1995) Origin of LREE-depleted amphiboles in the subcontinental mantle. Geochim Cosmochim Acta 59:1763–1771

    Article  CAS  Google Scholar 

  • Vannucci R, Bottazzi P, Wulff-Pedersen E, Neumann E-R (1998) Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Islands): implications for the nature of the metasomatic agents. Earth Planet Sci Lett 158:39–51

    Article  CAS  Google Scholar 

  • Vernières J, Godard M, Bodinier J-L (1997) A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth’s upper mantle. J Geophys Res 102:24771–24784

    Article  Google Scholar 

  • Wallace ME, Green DH (1988) An experimental determination of primary carbonatite composition. Nature 335:345–346

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:28–60

    Article  Google Scholar 

  • Wendlandt RF, Harrison WJ (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapour: results and implications for the formation of Light Rare Earth-enriched rocks. Contrib Mineral Petrol 69:409–419

    CAS  Google Scholar 

  • van Westrenen W, Blundy JD, Wood BJ (2001) High field strength element/rare earth element fractionation during partial melting in the presence of garnet: implications for identification of mantle heterogeneities. Geochem Geophys Geosyst G3: 2

    Google Scholar 

  • Wulff-Pedersen E, Neumann, E-R, Vannucci R, Bottazzi P, Ottolini L (1999) Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands. Contrib Mineral Petrol 137:59–82

    Article  CAS  Google Scholar 

  • Xu YG, Mercier J-CC, Menzies MA, Ross JV, Harte B, Lin C, Shi L (1996) K-rich glass-bearing wehrlite xenoliths from Ytong, Northeastern China: petrological and chemical evidence for mantle metasomatism. Contrib Mineral Petrol 125:406–420

    Article  CAS  Google Scholar 

  • Xu X, O’Reilly SY, Griffin WL, Zhou X (2000) Genesis of young lithospheric mantle in southeastern China. J Petrol 41:111–148

    Article  CAS  Google Scholar 

  • Yaxley GM, Green DH (1996) Experimental reconstruction of sodic dolomitic carbonatite melts from metasomatised lithosphere. Contrib Mineral Petrol 124:359–369

    Article  CAS  Google Scholar 

  • Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt 78:243–255

    CAS  Google Scholar 

  • Yaxley GM, Kamenetsky V (1999) In situ origin for glass in mantle xenoliths from southeastern Australia: insights from trace element compositions of glasses and metasomatic phases. Earth Planet Sci Lett 172:97–109

    Article  CAS  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  CAS  Google Scholar 

  • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R (1999) The Finero phlogopite-peridotite massif: an example of subduction-related metasomatism. Contrib Mineral Petrol 134:107–122

    Article  CAS  Google Scholar 

  • Zinngrebe E, Foley SF (1995) Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment. Contrib Mineral Petrol 122:79–96

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the FOMICRUZ agency and R. Barrenechea for the facilities and help they provided during the field work in Patagonia. Jean-Louis Bodinier is greatly thanked for having kindly provided the Plate Model software. We gratefully acknowledge the constructive revisions by M. Grégoire and M. Menzies. This research was financially supported by MURST (COFIN 1998 and 2000), CRN and CNR-CONICET joint programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Rivalenti.

Additional information

In memory of Carlo Rivalenti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivalenti, G., Zanetti, A., Mazzucchelli, M. et al. Equivocal carbonatite markers in the mantle xenoliths of the Patagonia backarc: the Gobernador Gregores case (Santa Cruz Province, Argentina). Contrib Mineral Petrol 147, 647–670 (2004). https://doi.org/10.1007/s00410-004-0582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0582-2

Keywords

Navigation