Skip to main content

Advertisement

Log in

U–Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the North China craton

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mafic xenoliths from the Paleozoic Fuxian kimberlites in the North China craton include garnet granulite, and minor pyroxene amphibolite, metagabbro, anorthosite and pyroxenite. The formation conditions of the amphibolites are estimated at 745–820 °C and 7.6–8.8 Kb (25–30 km); the granulites probably are derived from greater depths in the lower crust. LAM-ICPMS U–Pb dating of zircons from four granulites reveals multiple age populations, recording episodes of magmatic intrusion and metamorphic recrystallisation. Concordant ages and upper intercept ages, interpreted as minimum estimates for the time of magmatic crystallisation, range from 2,620 to 2,430 Ma in three granulites, two amphibolites and two metagabbros. Lower intercept ages, represented by near-concordant zircons, are interpreted as reflecting metamorphic recrystallisation, and range from 1,927 to 1,852 Ma. One granulite contains two metamorphic zircon populations, dated at 1,927±55 Ma and 600–700 Ma. Separated minerals from one granulite and one amphibolite yield Sm–Nd isochron ages of 1,619±48 Ma (143Nd/144Nd)i=0.51078), and 1,716±120 Ma (143Nd/144Nd)i=0.51006), respectively. These ages are interpreted as recording cooling following metamorphic resetting; model ages for both samples are in the range 2.40–2.66 Ga. LAM-MC-ICPMS analyses of zircon show a range in 176Hf/177Hf from 0.28116 to 0.28214, corresponding to a range of εHf from −34 to +12. The relationships between 207Pb/206Pb age and εHf show that: (1) the granulites, amphibolites and metagabbro were derived from a depleted mantle source at 2.6–2.75 Ga; (2) zircons in most samples underwent recrystallisation and Pb loss for 100–200 Ma after magmatic crystallisation, consistent with a residence in the lower crust; (3) metamorphic zircons in several samples represent new zircon growth, incorporating Hf liberated from breakdown of silicates with high Lu/Hf; (4) in other samples metamorphic and magmatic zircons have identical 176Hf/177Hf, and the younger ages reflect complete resetting of U–Pb systems in older zircons. The Fuxian mafic xenoliths are interpreted as the products of basaltic underplating, derived from a depleted mantle source in Neoarchean time, an important period of continental growth in the North China craton. Paleoproterozoic metamorphic ages indicate an important tectonic thermal event in the lower crust at 1.8–1.9 Ga, corresponding to the timing of collision between the Eastern and Western Blocks that led to the final assembly of the North China craton. The growth of metamorphic zircon at 600–700 Ma may record an asthenospheric upwelling in Neoproterozoic time, related to uplift and a regional disconformity in the North China craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  CAS  Google Scholar 

  • Arculus RJ, Ruff LJ (1990) Genesis of continental crust: evidence from island arcs, granulites, and exospheric processes. In: Vielzeuf D, Vidal P (eds) Granulites and crustal evolution. NATO ASI Ser C 311:7–23

    CAS  Google Scholar 

  • Belousova EA, Griffin WL, Shee SR, Jackson SE, O’Reilly SY (2001) Two age populations of zircons from the Timber Creek kimberlites, Northern Territory, Australia as determined by laser ablation ICPMS analysis. Aust J Earth Sci 48:756–766

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Miner Petrol 143:602–622

    CAS  Google Scholar 

  • Bizzarro EA, Baker JA, Ulfbeck D, Rosing M (2003) Early history of the Earth’s crust-mantle system inferred from hafnium isotopes in chondrites. Nature 421:931–933

    Article  CAS  PubMed  Google Scholar 

  • Black LP, Gulson BL (1978) The Age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR J Australian Geol Geophys 3:227–232

    CAS  Google Scholar 

  • Blichert-Toft J, Albarède F (1998) The Lu-Hf geochemistry of chondrites and evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Blundy JD, Holland TJB (1990) Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib Mineral Petrol 104:208–224

    CAS  Google Scholar 

  • Chen YD, O’Reilly SY, Kinny PD, Griffin WL (1994) Dating lower crust and upper mantle events: an ion microprobe study of xenoliths from kimberlitic pipes, South Australia. Lithos 32:77–94

    Article  CAS  Google Scholar 

  • Chen YD, O’Reilly SY, Griffin WL, Krogh TE (1998) Combined U–Pb dating and Sm–Nd studies on lower crustal and mantle xenoliths from the Delegate basaltic pipes, SE Australia. Contrib Miner Petrol 130:154–161

    Article  CAS  Google Scholar 

  • Chen SH, O’Reilly SY, Zhou XH, Griffin WL, Zhang GH, Sun M, Feng JL, Zhang M (2001) Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean craton, China: evidence from xenoliths. Lithos 56:267–301

    Article  CAS  Google Scholar 

  • Cheng YQ (1998) Precambrian geological evolution of the North China platform. Geological Publishing House, Beijing, p 145 (in Chinese)

  • Chi JS, Lu FX, Zhao L, Zhao CH, Zheng JP (1996) Kimberlites and Paleozoic lithospheric mantle beneath the North China platform. Science Press, Beijing, p 274 (in Chinese)

  • Condie KC (1999) Mafic crustal xenoliths and the origin of the lower continental crust. Lithos 46:95–101

    Article  CAS  Google Scholar 

  • Condie KC (2000) Episodic continental growth models: afferthoughts and extensions. Tectonophysics 322:153–162

    Article  CAS  Google Scholar 

  • Debièvre P, Taylor PDP (1993) Table of the isotopic composition of the elements. Int J Mass Spectrom Ion Process 123:149

    Article  Google Scholar 

  • Downes H (1993) The nature of the lower continental crust of Europ: petrogical and geochemical evidence from xenoliths. Phys Earth Planetary Interiors 79:195–218

    Article  Google Scholar 

  • Ernst WG (1988) Element partitioning and thermobarometry in polymetamorphic late Archean and Early-Mid Proterozoic rocks from eastern Liaoning and southern Jilin provinces, China. Am J Sci 288A:293–340

    Google Scholar 

  • Fan QC, Hooper PR (1989) The mineral chemistry of ultramafic xenoliths of Eastern China: implications for upper mantle composition and the paleogeotherms. J Petrol 30:1117–1158

    Google Scholar 

  • Fan QC, Liu RX (1996) The high-temperature granulite xenoliths from Hannuoba basalts. Chin Sci Bull 41:235–238 (in Chinese)

    Google Scholar 

  • Fan QC, Liu RX, Li HM, Li N, Sui JL, Lin ZR (1998) The zircon dating and REE of granulitic xenoliths from Hannuoba. Chin Sci Bull 41:133–137 (in Chinese)

    Google Scholar 

  • Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD, Hu YK (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975

    Article  CAS  Google Scholar 

  • Griffin WL, O’Reilly SY (1986) The lower crust in eastern Australia: xenolith evidence. In: Dawson JB, Carswell DA, Hall J, Wedepohl (eds) Nature of the lower crust. Geol Soc Lond 24:363–374

    Google Scholar 

  • Griffin WL, O’Reilly SY (1987) The composition of lower crust and nature of the Moho-xenolith evidence. In: Nixon PX (ed) Mantle xenoliths. Wiley, New York, pp 413–430

  • Griffin WL, Carswell DA, Nixon PH (1979) Lower crustal granulites from Lesotho, South Africa. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusions in kimberlites and other volcanic. In: Proceedings of 2nd International Kimberlite Conference, 2, American Geophysics Union, Washington DC, pp 59–86

  • Griffin WL, O’Reilly SY, Ryan CG (1992) Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: proton microprobe studies, Interna. In: Symposium of Cenozoic volcanic rocks and deep-seated xenoliths of China and its environs, Beijing, p 20

  • Griffin WL, Zhang AD, O’Reilly SY, Ryan CG (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M, Chung SL, Lo CH (eds) Mantle dynamics and plate internationals in East Asia. Am Geophys Union Geodyn Ser 27:107–126

    Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, O’Reilly SY, van Achterberg E, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  CAS  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma nixing: SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexs. Lithos 61:237–269

    Article  CAS  Google Scholar 

  • Guan H, Sun M, Wilde SA, Zhou XH, Zhai MG (2002) SHRIMP U–Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China craton. Precambrian Res 113:1–18

    Article  CAS  Google Scholar 

  • Guo JH, Zhai MG, Zhang YG, Li YG, Yang YH, Zhang WH (1994) Geological features, petrology geo-chemistry and isotopic age of Precambrian high-pressure granulite Sanggan belt in Manjingou, Huaian. Acta Petrol Sin 11:1–13 (in Chinese)

    Google Scholar 

  • Halpin JA, Gerakiteys CL, Clarke GL, Belousova EA, Griffin WL (2004). In-situ U–Pb geochronology and Hf isotope analyses of the Rayner Complex, east Antarctica. Contr Min Petrol (subm.)

  • He GP, Ye HW (1992) The evolution and metamorphism of Jidong granulites. Acta Petrologica Sinica 8:128–135 (in Chinese)

    Google Scholar 

  • Hirata T, Nesbitt RW (1995) U–Pb isotope geochronology of zircon: evaluation of the laser probe-inductively couped plasma-mass spectrometry technique. Geochim Cosmochim Acta 59:2491–2500

    Article  CAS  Google Scholar 

  • Hollister LS, Grissom GC, Peter EK, Stowell HH, Sisson VB (1987) Confirmation of the empicial correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72:231–239

    CAS  Google Scholar 

  • Holtta P, Huhma H, Manttari I, Peltonen P, Juhanoja J (2000) Petrology and geochemistry of mafic granulite xenoliths from the Lahtojoki kimberlite pipe, eastern Finland. Lithos 51:109–133

    Article  CAS  Google Scholar 

  • Hu BQ (2001) Geological and geochemical characteristics of anatectic xenoliths and t the model of lithosphere in Xinyang, Henan. A Dissertation Submitted to China University of Geosciences for the Doctor Degree of Philosophy, Wuhan (in Chinese)

  • Jackson SE, Pearson NJ, Griffin WL, Belousoval EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U–Pb zircon geochronology. Chem Geol (in press)

  • Jahn BM (1990) Origin of granulites: geochemical constraints form Archean granulite facies rocks of the Sino-Korean craton, China. In: Vielzeut D, Vidal Ph (eds) Granulites and Crustal Evolution, NATO ASI Ser C Math Phys Sci 311:471–492

  • Jahn BM, Condie KC (1995) Evolution of the Kaapvaal craton as viewed from geochemical and Sm–Nd isotopic analyses of intracratonic pelites. Geochim Cosmochim Acta 59:2239–2258

    Article  CAS  Google Scholar 

  • Jahn BM, Ernst W (1990) Late Archean Sm–Nd isochron age for mafic-ultramafic supracrustal amphibolites from the northeastern Sino-Korean craton, China. Precambrian Res 46:295–306

    Article  CAS  Google Scholar 

  • Jahn BM, Auvray B, Shen QH, Liu DY, Zhang ZQ, Dong YJ, Ye XJ, Zhang QZ, Conichet J, Mace J (1988) Archean crustal evolution in China: the Taishan Complex and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Res 38:81–403

    Article  Google Scholar 

  • Jin W, Li SX, Liu XS (1991) The metamorphic dynamics of Early Precambrian high-grade metamorphic rocks series in Daqing-Ulashan area, Inner Mongolia. Acta Petrol Sin 7:27–35 (in Chinese with English abstract)

    Google Scholar 

  • Kay RW, Mahlburg KS (1990) Basaltic composition xenoliths and the formation, modification and preservation of lower crust. In: Salisbury MH, Fountain DM (eds) Exposed cross-sections of the continental crust. NATO ASI Ser C 317:401–420

    Google Scholar 

  • Kempton PD, Downes H, Wartho JA, Zartman RE, Sharkov E (2001) Garnet granulite xenoliths from the Northern Baltic shield-Underplated lower crust of a Paleoproterozoic large igneous province? J Petrol 42:731–763

    Article  CAS  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279

    Google Scholar 

  • Krogh TE (1973) A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Article  CAS  Google Scholar 

  • Krogh TE (1982) Improved accuracy of U–Pb ages by the creation of more concordant fractions using a high gradient magnetic separation technique. Geochim Cosmochim Acta 46:637–649

    Article  CAS  Google Scholar 

  • Li SX, Liu XS, Zhang LQ (1987) Granite-greenstone belt in Sherteng area, Inner Mongolia, China. J Changchun Univ Earth Sci 17:81–102 (in Chinese with English abstract)

    Google Scholar 

  • Ling WL, Gao S, Zhao ZB, Zhang L (1998) New evidences from the Sm–Nd isotopic and REE study on the difference between the Archean basement of the Yangtze and North China craton. Acta Geoscientia Sinica 18(spec.):24–27

    Google Scholar 

  • Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of 3,800 Ma crust in Chinese part of the Sino-Korean craton. Geology 20:339–342

    Article  CAS  Google Scholar 

  • Liu YS, Gao S, Jin SY, Hu SH, Sun M, Zhao ZB (2001) Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China craton: implications for petrogenesis and lower crustal composition. Geochim Cosmochim Acta 65:2589–2604

    Article  CAS  Google Scholar 

  • Liu SW, Pan YM, Li JH, Li QG, Zhang J (2002) Geological and isotopic geochemical constraints on the evolution of the Fuping Complex, North China craton. Precambrian Res 117:41–56

    Article  CAS  Google Scholar 

  • Lu FX, Zheng JP (1996) Characteristics of Paleozoic lithosphere mantle and deep processes beneath the North China Block. In: Chi JS, Lu FX (eds) Kimberlites and Paleozoic Lithospheric Mantle beneath the North China Platform. Science Press, Beijing, pp 215–274 (in Chinese)

  • Ludwig KR (2000) Isoplot—a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Spec. Publ. No. 1a, p 53

  • Ma X, Liu C, Liu G (1991) Global geoscience transect 2: Xiangshui to Mandal transect, North China. American Geophysics Union, Washington DC, p 121

    Google Scholar 

  • Machado N, Gauthier G (1996) Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil. Geochimica et Cosmochimica Act 60:5063–5073

    Article  CAS  Google Scholar 

  • Markwick AJW, Downes H (2000) Lower crustal granulite xenoliths from the Arkhangelsk kimberlite pipes: petrological, geochemical and geophysical results. Lithos 51:135–151

    Article  CAS  Google Scholar 

  • Mattie PD (1997) Origin of the continental crust in the Colorado Plateau: geochemical evidence from mafic xenoliths from the Navajo Volcanic Field, southwestern USA. Geochim Cosmochim Acta 61:2007–2021

    Article  CAS  Google Scholar 

  • Menzies MA, Xu YG (1998) Geodynamics of the North China craton. In: Flower M, Chung SL, Lo CH (eds) Mantle dynamics and plate internationals in East Asia. Am Geophys Union Geodyn Ser 27:155–165

    Google Scholar 

  • O’Reilly SY, Griffin WL (1994) Moho and petrologic crust-mantle boundary coincide under southeastern Australia. Geology 22:666–667

    Article  Google Scholar 

  • Peng ZC, Zartman RE, Futa K, Chen DG (1986) Pb-, Sr-, Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, Eastern China. Chem Geol 59:3–33

    CAS  Google Scholar 

  • Peucat JJ, Vidal P, Bernard-Griffiths J, Condie KC (1989) Sr, Nd, and Pb isotopic systematic in the Archean low- to high-grade transition zone of southern India, syn-accretion vs. post-accretion high-pressure granulites. J Geol 97:537–550

    CAS  Google Scholar 

  • Piper JDA, Zhang QR (1997) Palaeomagnetism of Neoproterozoic glacial rocks of the Huabei dhield: the North China Block in Gondwana. Tectonophysics 283:145–171

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray microanalysis. Part 1: application to the analysis of homogeneous samples. Recherche Aerospatiale 5:13–38

    Google Scholar 

  • Rudnick RL (1990) Nd and Sr isotopic composition of lower crustal xenoliths from North Queensland, Australia: implications for Nd model ages and crustal growth processes. Chem Geol 83:195–208

    Article  CAS  Google Scholar 

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    Article  CAS  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Rudnick RL, Taylor SR (1987) The composition and petrogenesis of the lower crust: a xenolith study. J Geophys Res 92:13981–14005

    CAS  Google Scholar 

  • Rudnick RL, Williams IS (1987) Dating the lower crust by ion microprobe. Earth Planet Sci Lett 85:245–261

    Article  Google Scholar 

  • Scherer E, Munker C, Mezger K (2001) Calibration of the Lutetium–Hafnium clock. Science 293:683–687

    CAS  PubMed  Google Scholar 

  • Shen QH, Liu DY, Wang P, Gao JF (1997) U–Pb and Rb–Sr ages of metamorphic rock series from Jining Group, southern Inner Mongolia. J China Inst Geol 16:165–178 (in Chinese with English abstract)

    Google Scholar 

  • Shi X (1997) Geochemistry and petrogenesis of granitic rocks from the khondalite series in south Inner Mongolia. MSc Thesis. Institute of Geology, Academia Sinica (in Chinese)

  • Song B, Nutman AP, Liu DY, Wu JS (1996) 3,800–2,500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res 78:79–94

    Article  Google Scholar 

  • Soto JI, Soto VM (1995) PTMAFIC: software package for thermometer, barometry and activity calculations in mafic rocks using an IBM-compatible computer. Comput Geosci 21:619–652

    Article  CAS  Google Scholar 

  • Stosch HG, Schmucker A, Reys C (1989) The nature and geological history of the deep crust under the Eifel, Germany. Terra Nova 4:53–62

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, p 178

    Google Scholar 

  • Wang JY, Chen MX, Wang JA, Deng X (1985) On the evolution of geothermal regime of North China Basin. J Geodyn 4:133–148

    Article  Google Scholar 

  • Wang KY, Hao J, Zhou SP, Wilde SA, Cawood PA (1997) SHRIMP geochronology on single zircon grains: constraints on timing of the Wutai orogenic events. Chin Sci Bull 42:1295–1298 (in Chinese)

    Google Scholar 

  • Wass SY, Hollis JD (1983) Crustal growth in southern Australia: evidence from lower crustal eclogitic and granulitic xenoliths. J Met Geol 1:25–45

    CAS  Google Scholar 

  • Wiedenbeck M (1995) An example of reverse discordance during ion microprobe zircon dating: an artefact of enhanced ion yields from labile radiogenic Pb. Chem Geol 125:197–218

    Article  CAS  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    CAS  Google Scholar 

  • Wu JS, Geng YS, Xu HF, Jin GL, He SY, Sun SW (1989) Metamorphic geology of the Fuping Group. Bull Inst Geol Chin Geol Sci 19:213 (in Chinese)

    Google Scholar 

  • Wu JS, Geng YS, Shen QH (1998) Geological nature and evolution of Archean continents, the Sino-Korean craton. Geological Publish House, Beijing, p 125 (in Chinese)

  • Xu YG (2002) Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: pyroxenite xenoliths from Hannuoba, North China, Chem Geol 182:301–322

    Google Scholar 

  • Xu RH, Zu M, Chen FK, Guo JH (1995) A geochrono logical study of the Longquanguan ductile shear zone. Quaternary Sci 4:332–342 (in Chinese)

    Google Scholar 

  • Xu X, O’Reilly SY, Griffin WL, Zhou X (1996) A xenolith-derived geotherm and the crust-mantle boundary at Qilin, southeastern China. Lithos 490(38):41–62

    Article  Google Scholar 

  • Xu X, O’Reilly SY, Griffin WL, Zhou X (1998) The nature of the Cenozoic lithosphere at Nushan, eastern China. In: Flower M, Chung SL, Lo CH, Lee YY (eds) Mantle Dynamics and Plate interactions in east Asia. Geodynamics Series, 27. American Geophysics Union, Washington DC, pp 167–196

  • Yu JH, Xu XS, O’Reilly SY, Griffin WL, Zhang M (2003) Granulite xenoliths from Cenozoic Basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks. Lithos 67:77–102

    Article  CAS  Google Scholar 

  • Yuan XC (1996) Velocity structure of the Qinling lithosphere and mushroom cloud model. Science in China (Ser D) 39:235–244

    Google Scholar 

  • Zhai MG, Bian AG (2000) The formation of supper-continent in Late Archean and the its breakup in Early Proterozoic, the Sino-Korean craton. Science in China (Ser D) 30(Sep):129–137

    Google Scholar 

  • Zhai MG, Guo JH, Liu WJ (2001) An exposed cross-section of early Precambrian continental lower crust in North China craton. Phys Chem Earth (A) 26(9–10):781–792

    Google Scholar 

  • Zhao GC, Wilde SA, Cawood PA, Lu LZ (1999) Thermal evolution of two textural types of mafic granulites in the North China craton: evidence for both mantle plume and collisional tectonics. Geol Mag 136(3):223–240

    Article  CAS  Google Scholar 

  • Zhao GC, Cawood PA, Wilde SA, Sun M, Lu LZ (2000) Metamorphism of basement rocks in the Central Zone of the North China craton: implications for Paleoproterozoic tectonic evolution. Precambrian Res 103:55–88

    Article  CAS  Google Scholar 

  • Zhao GC, Wilde SA, Cawood PA, Sun M (2001) Archean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Res 107:45–73

    Article  CAS  Google Scholar 

  • Zhao GC, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 125–162

  • Zheng JP (1999) Mesozoic-Cenozoic mantle replacement and lithospheroc thinning beneath the eastern China. China University of Geosciences Press Wuhan, p 126 (in Chinese with English abstract)

  • Zheng JP, Lu FX (1999) Mantle xenoliths from kimberlites, Shandong and Liaoning: Paleozoic mantle character and its heterogeneity. Acta Petrologica Sinica 15(1):65–74 (in Chinese)

    Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M (1998) Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton. Int Geol Rev 40:471–499

    Google Scholar 

  • Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M (2001) Relics of the Archean mantle beneath eastern part of the North China block and its significance in lithospheric evolution. Lithos 57:43–66

    Article  CAS  Google Scholar 

  • Zheng JP, Sun M, Lu FX, Pearson N (2003) Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean craton. Tectonophysics 361:37–60

    Article  CAS  Google Scholar 

  • Zhou XH, Sun M, Zhang GH, Chen SH (2002) Continental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos 62:111–124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Norman Pearson, Elena Belousova, Suzy Elhlou and Carol Lawson for their constant and patient assistance with analytical work. Norman Pearson and Elena Belousova also assisted considerately with interpretation of analytical results. This study was supported by the Natural Science Foundation of China (40072021, 40133020 and 40273001) and the ACILP AusAID Program (SYO’R and WLG). We thank Bill Collins, Marc Norman and David Nelson for constructive reviews. This is contribution no. 354 from the ARC National Key Centre for Geochemical Evolution and Metallogeny of Continents (http://www.es.mq.edu.au/GEMOC/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Griffin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, J., Griffin, W.L., O’Reilly, S.Y. et al. U–Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the North China craton. Contrib Mineral Petrol 148, 79–103 (2004). https://doi.org/10.1007/s00410-004-0587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0587-x

Keywords

Navigation