Skip to main content
Log in

Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon Islands

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Island arc picrites are restricted to a few localities including the Lesser Antilles, Japan, Vanuatu and the Solomon Islands. The picrite occurrences appear to be linked to the subduction of young, hot oceanic crust and anomalous geotherms. At the Solomon arc, the Australian plate is presently subducted beneath the Pacific plate. A particular feature of the Solomon arc is the subduction of a spreading center (Woodlark Ridge). In the Solomon Islands, picrites only occur in the New Georgia archipelago, located above or close to the subducting Woodlark Ridge. These picrites contain between 12 and 30 wt% MgO, the associated primitive basalts show MgO contents from 11.5 to 13.6 wt%. Linear trends defined by Cr, Ni and other trace elements vs. MgO indicate that the picritic bulk compositions originate from mixing between a basaltic-picritic melt and a Mg- and Cr-rich endmember, rather than from fractional crystallization of extremely Mg-rich magmas. Major and trace element modeling identify mantle wedge peridotite as the most likely mixing endmember. Trace element abundances in the Solomon arc picrites indicate a mantle source enrichment by subduction components and a large depletion of Nb and Ta that is typical for island arc volcanic rocks. Most incompatible trace element patterns of the New Georgia picrites and basalts are parallel, supporting a cogenetic evolution of these rocks by mixing processes. 87Sr/86Sr and ɛNd values in the basalts and picrites range from 0.7033 to 0.7043 and +5.8 to +8.0, respectively. These values partially overlap with compositions of the Indian MORB field. Alternatively, subducted sediment and fluids from altered MORB may have displaced the Sr isotope composition to more radiogenic 87Sr/86Sr. ɛHf values range from +12.2 to +14.6 and show in combination with ɛNd that the picrites were most likely generated within the Indian mantle domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A,B
Fig. 5
Fig. 6A,B
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraham DA, Baekisapa M, Booth DJ, Dunkley PN, Hughes GW, Langford RL, Philip PR, Ridgway J, Smith A, Strange PJ (1987) New Georgia group geological map sheet, 1:250.000. Geological Survey Division, Ministry of Natural Resources, Honiara, Solomon Islands (publisher)

  • Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  CAS  Google Scholar 

  • Bottazzi P, Tiepolo M, Vannucci R, Zanetti A, Brumm R, Foley SF, Oberti R (1999) Distinct site preferences for heavy and light REE in amphibole and the prediction of Amph/L DREE. Contrib Mineral Petrol 137:36–45

    Article  CAS  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed): Rare earth element geochemistry. Elsevier, Amsterdam, pp 89–94

    Google Scholar 

  • Cox KG, Bell JD (1972) A crystal fractionation model for the basaltic rocks of the New Georgia group, British Solomon Islands. Contrib Mineral Petrol 37:1–13

    CAS  Google Scholar 

  • Cox KG, Mitchell C (1988) Importance of crystal settling in the differentiation of Deccan Trap basaltic magmas. Nature 333:447–449

    Article  CAS  Google Scholar 

  • Crawford AJ, Falloon TJ, Eggins S (1987) The origin of island arc high-alumina basalts. Contrib Mineral Petrol 97:417–430

    CAS  Google Scholar 

  • Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites and related rocks. Unwin Hyman, Boston, pp 2–49

    Google Scholar 

  • Crawford AJ, Briqueu L, Laporte C, Hasenaka T (1995) Coexistence of Indian and Pacific oceanic upper mantle reservoirs beneath the central New Hebrides island arc. In: Taylor B, Natland JP (eds) Active margins and marginal basins of the Western Pacific. Geophys Monogr Am Geophys Union: 199–217

    Google Scholar 

  • Dorendorf F, Wiechert U, Wörner G (2000) Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka/Russia. Earth Planet Sci Lett 175:69–86

    Article  CAS  Google Scholar 

  • Eggins SM (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Mineral Petrol 114:79–100

    CAS  Google Scholar 

  • Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32:1057–1086

    Article  CAS  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin Heidelberg New York, p 358

    Google Scholar 

  • Govindaraju K (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newslett 18:1–158

    CAS  Google Scholar 

  • Green DH, Wallace ME (1988) Mantle metasomatism by ephemeral carbonatite melts. Nature 336:459–462

    Article  CAS  Google Scholar 

  • Green DH, Schmidt MW, Hibberson WO (2004) Island-arc ankaramites: primitive melts from fluxed refractory lherzolitic mantle. J Petrol 45:391–403

    Google Scholar 

  • Hart SR, Davis KE (1978) Nickel partitioning between olivine and silicate melt. Earth Planet Sci Lett 40:203–219

    Article  CAS  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    CAS  Google Scholar 

  • Heinrichs H, Herrmann AG (1990) Praktikum der analytischen Geochemie. Springer, Berlin, Heidelberg New York, p 667

    Google Scholar 

  • Herzberg C, O’Hara MJ (1998) Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth Sci Rev 44:39–79

    Article  CAS  Google Scholar 

  • Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46:2099–2115

    Article  CAS  Google Scholar 

  • Hickey-Vargas R, Hergt JM, Spadea P (1995) The Indian ocean-type isotopic signature in western Pacific marginal basins: origin and significance. In: Taylor B, Natland JP (eds) Active margins and marginal basins of the Western Pacific. Geophys Monogr Am Geophys Union 88:175–197

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  CAS  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  CAS  Google Scholar 

  • Hussong DM, Wippermann LK, Kroenke LW (1979) The crustal structure of the Ontong Java and Manihiki oceanic plateaus. J Geophys Res 84:6003–6011

    Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  CAS  Google Scholar 

  • Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310

    CAS  Google Scholar 

  • Johnson RW, Jaques AL, Langmuir CH, Perfit MR, Staudigel H, Dunkley PN, Chappell BW, Taylor SR, Baekisapa M (1987) Ridge subduction and forearc volcanism: petrology and geochemistry of rocks dredged from the western Solomon arc and Woodlark basin. Circum Pac Counc Energy Min Res 7:55–226

    Google Scholar 

  • Kamenetsky VS, Crawford AJ, Eggins S, Mühe R (1997) Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components. Earth Planet Sci Lett 151:205–223

    Article  Google Scholar 

  • Kamenetsky VS, Sobolev AV, Eggins SM, Crawford AJ, Arculus RJ (2002) Olivine-enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source and enriched components. Chem Geol 183:287–303

    Article  CAS  Google Scholar 

  • Kempton PD, Pearce JA, Barry TL, Fitton JG, Langmuir C, Christie DM (2002) Sr–Nd–Pb–Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source. Geochem Geophys Geosyst (G3) 3: paper no. 10.1029/2002GC000320

    Google Scholar 

  • Kennedy AK, Lofgren GE, Wasserburg GJ (1993) An experimental study of trace element partitioning between olivine, orthopyroxene and melt chondrules equilibrium values and kinetic effects. Earth Planet Sci Lett 115:177–195

    Article  CAS  Google Scholar 

  • Kerr AC, Marriner GF, Arndt NT, Tarney J, Nivia A, Saunders AD, Duncan RA (1996) The petrogenesis of Gorgona komatiites, picrites and basalts: new field, petrographic and geochemical constraints. Lithos 37:245–260

    Article  CAS  Google Scholar 

  • Larsen LM, Pedersen AK, Sundvoll B, Frei R (2003) Alkali picrites formed by melting of old metasomatized lithospheric mantle: Manîtdlat Member, Vaigat Formation, Paleocene of West Greenland. J Petrol 44:3–38

    Article  CAS  Google Scholar 

  • Le Bas MJ (2000) IUGS Reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41:1467–1470

    Google Scholar 

  • Libourel G (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contrib Mineral Petrol 136:63–80

    Article  CAS  Google Scholar 

  • Mahoney JJ, Spencer KJ (1991) Isotopic evidence for the origin of the Manihiki and Ontong Java oceanic plateaus. Earth Planet Sci Lett 104:196–210

    Article  CAS  Google Scholar 

  • Mann P (1997) Model for the formation of large transtensional basins in zones of tectonic escape. Geology 25:211–214

    Article  Google Scholar 

  • Mann P, Taylor FW, Lagoe MB, Quarles A, Burr G (1998) Accelerating late quaternary uplift of the New Georgia Island Group (Solomon island arc) in response to subduction of the recently active Woodlark spreading center and Coleman seamount. Tectonophysics 295:259–306

    Article  Google Scholar 

  • Münker C, Weyer S, Scherer E, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem Geophys Geosyst (G3) 2: paper no. 10.1029/2001GC000183

    Google Scholar 

  • Pearce JA, Kempton PD, Nowell GM, Noble SR (1999) Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. J Petrol 40:1579–1611

    Article  CAS  Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139:36–53

    Article  CAS  Google Scholar 

  • Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Edwards CMH, Hirose K (1997) Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38:1331–1358

    Article  CAS  Google Scholar 

  • Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical charcteristics of island-arc basalts: implications for mantle sources. Chem Geol 30:227–256

    Article  CAS  Google Scholar 

  • Perfit MR, Langmuir CH, Baekisapa M, Chappel BW, Johnson RW, Staudigel H, Taylor SR (1987) Geochemistry and petrology of volcanic rocks from the Woodlark basin: addressing questions of ridge subduction. Circum Pac Counc Energy Min Res 7:113–154

    Google Scholar 

  • Perfit MR, Fornari DJ, Ridley WI, Kirk PD, Casey J, Kastens KA, Reynolds JR, Edwards M, Desonie D, Shuster R, Paradis S (1996) Recent volcanism in the Siqueiros transform fault: picritic basalts and implications for MORB magma genesis. Earth Planet Sci Lett 141:91–108

    Article  CAS  Google Scholar 

  • Petterson MG, Babbs T, Neal CR, Mahoney JJ, Saunders AD, Duncan RA, Tolia D, Magu R, Qopoto C, Mahoha H, Natogga D (1999) Geologic-tectonic framework of the Solomon Island, SW Pacific: crustal accretion and growth within an intra-oceanic setting. Tectonophysics 301:35–60

    Article  CAS  Google Scholar 

  • Ramsay WHR, Crawford AJ, Foden JD (1984) Field setting, mineralogy, chemistry, and genesis of arc picrites, New Georgia, Solomon Islands. Contrib Mineral Petrol 88:386–402

    CAS  Google Scholar 

  • Ringwood AE (1974) The petrological evolution of island arc systems. J Geol Soc Lond 130:183–204

    Google Scholar 

  • Rohrbach A, Schuth S, Münker C, Ballhaus C (2003) Island arc picrites from the Solomon Islands—origin by mantle matrix collapse. Geophys Res Abstr 5:11716

    Google Scholar 

  • Shimizu H, Sawatari H, Kawata Y, Dunkley PN, Masuda A (1992) Ce and Nd isotope geochemistry on island arc volcanic rocks with negative Ce anomaly: existence of sources with concave REE patterns in the mantle beneath the Solomon and Bonin island arcs. Contrib Mineral Petrol 110:242–252

    CAS  Google Scholar 

  • Sisson TW, Grove TL (1993) Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol 113:166–184

    Google Scholar 

  • Takazawa E, Frey FA, Shimizu N, Obata M (2000) Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process? Geochim Cosmochim Acta 64:695–716

    Article  CAS  Google Scholar 

  • Tejada MLG, Mahoney JJ, Duncan RA, Hawkins MP (1996) Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of Ontong Java Plateau. J Petrol 37:361–394

    CAS  Google Scholar 

  • Tejada MLG, Mahoney JJ, Neal CR, Duncan RA, Petterson MG (2002) Basement geochemistry and geochronolgy of Central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. J Petrol 43:449–484

    Article  CAS  Google Scholar 

  • Thirlwall MF, Graham AM, Arculus RJ, Harmon RS, MacPherson CG (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb–Sr–Nd–O isotope geochemistry of Grenada, Lesser Antilles. Geochim Cosmochim Acta 60:4785–4810

    Article  CAS  Google Scholar 

  • Thompson RN, Gibson SA, Dickin AP, Smith PM (2001) Early creataceous basalt and picrite dykes of the Southern Etendeka Region, NW Namibia: Windows into the role of the Tristan mantle plume in Paraná-Etendeka magmatism. J Petrol 42:2049–2081

    Article  CAS  Google Scholar 

  • Ulmer P (2001) Partial melting in the mantle wedge—the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas. Phys Earth Planet Int 127:215–232

    Article  CAS  Google Scholar 

  • Weissel JK, Taylor B, Karner GD (1982) The opening of the Woodlark basin, subduction of the Woodlark spreading system, and the evolution of Northern Melanesia since Mid-Pliocene time. Tectonophysics 87:253–277

    Article  Google Scholar 

  • Weyer S (2001) High field strength elements and rare earth elements in the depleted mantle: atrace element and isotope study of the Balmuccia peridotite complex (Ivrea Zone, Italian Alps). PhD Thesis, Westfälische Wilhelms-Universität, p 121

    Google Scholar 

  • Weyer S, Münker C, Mezger K (2003) Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust-mantle system. Earth Planet Sci Lett 205:309–324

    Article  CAS  Google Scholar 

  • Woodhead JD, Eggins SM, Johnson RW (1998) Magma genesis in the New Britain island arc: further insights into melting and mass transfer processes. J Petrol 39:1641–1668

    Article  CAS  Google Scholar 

  • Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001) Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet Sci Lett 192:331–346

    Article  CAS  Google Scholar 

  • Woodland SJ, Pearson DG, Thirlwall MF (2002) A platinum group element and Re–Os isotope investigation of siderophile element recycling in subduction zones: comparison of Grenada, Lesser Antilles arc, and the Izu-Bonin arc. J Petrol 43:171–198

    Article  CAS  Google Scholar 

  • Wyllie PJ (1982) Subduction products according to experimental prediction. Bull Geol Soc Am 93:468–476

    CAS  Google Scholar 

  • Yamamoto M (1988) Picritic primary magma and its source mantle for Ōshima–Ōshima and back-arc side volcanoes, northeast Japan arc. Contrib Mineral Petrol 99:352–359

    CAS  Google Scholar 

  • Yoder HS, Tilley CF (1962) Origin of basaltic magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the DFG (German Research Foundation, project “Inselbogenpikrite” MU 1406/2-1). Oliver Nebel is thanked for comments and Heidi Baier for lab support. We thank Markus Klein from the Universität Köln for XRF analyses. Stanley Basi and Andrew Mason provided support in organizing the field campaign in the Solomon Islands. We are thankful for detailed and constructive journal reviews by Marlina Elburg and David Peate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Schuth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuth, S., Rohrbach, A., Münker, C. et al. Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon Islands. Contrib Mineral Petrol 148, 288–304 (2004). https://doi.org/10.1007/s00410-004-0604-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0604-0

Keywords

Navigation