Skip to main content
Log in

The stability of primary alluaudites in granitic pegmatites: an experimental investigation of the Na2(Mn2−2x Fe1+2x )(PO4)3 system

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In order to assess the geothermometric potential of the Na2(Mn2−2x Fe1+2x )(PO4)3 system (x = 0–1), which represents the compositions of natural weakly oxidized alluaudites, we performed hydrothermal experiments between 400 and 800°C, at 1 kbar, under an oxygen fugacity (f(O2)) controlled by the Ni–NiO (NNO), Fe2O3–Fe3O4 (HM), Cu2O–CuO (CT), and Fe–Fe3O4 (MI) buffers. When f(O2) is controlled by NNO, single-phase alluaudites crystallize at 400 and 500°C, whereas the association alluaudite + marićite appears between 500 and 700°C. The limit between these two fields corresponds to the maximum temperature that can be reached by alluaudites in granitic pegmatites, because marićite has never been observed in these geological environments. Because alluaudites are very sensitive to variations of oxygen fugacity, the field of hagendorfite, Na2MnFe2+Fe3+(PO4)3, has been positioned in the f(O2)–T diagram, and provides a tool that can be used to estimate the oxygen fugacity conditions that prevailed in granitic pegmatites during the crystallization of this phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Antenucci D (1992) Synthèse et cristallochimie de composés à structure alluaudite. Incidences dans les processus d’altération des phosphates Fe–Mn des pegmatites granitiques. PhD thesis, University of Liège, 259 p

  • Araki T, Moore PB (1981) Fillowite, Na2Ca(Mn,Fe)2+ 7(PO4)6: its crystal structure. Am Mineral 66:827–842

    Google Scholar 

  • Auernhammer M, Effenberger H, Hentschel G, Reinecke T, Tillmanns E (1993) Nickenichite, a new arsenate from the Eifel, Germany. Mineral Petrol 48:153–166

    Article  Google Scholar 

  • Baldwin JR, Von Knorring O (1983) Compositional range of Mn-garnet in zoned granitic pegmatites. Can Mineral 21:683–688

    Google Scholar 

  • Boury P (1981) Comportement du fer et du manganèse dans les associations de phosphates pegmatitiques. Master thesis, University of Liège, 118 p

  • Bridson JH, Quinlan SE, Tremaine PR (1998) Synthesis and crystal structure of marićite and sodium iron(III) hydroxyphosphate. Chem Mater 10:763–768

    Article  Google Scholar 

  • Brunet F, Chopin C, Seifert F (1998) Phase relations in the MgO–P2O5–H2O system and the stability of phosphoellenbergerite: petrological implications. Contrib Mineral Petrol 131:54–70

    Article  Google Scholar 

  • Burnham CW (1991) LCLSQ version 8.4, least-squares refinement of crystallographic lattice parameters. Dept Earth Planetary Sciences, Harvard University, 24 p

  • Černý P (1991) Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatite deposits. Geosci Can 18(2):49–67

    Google Scholar 

  • Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421

    Google Scholar 

  • Černý P, Ercit TS, Vanstone PT (1996) Petrology and mineralization of the Tanco rare-element pegmatite, Southeastern Manitoba. Field trip guidebook A4, Geological Association of Canada/Mineralogical Association of Canada Annual Meeting, Winnipeg, Manitoba, May 27–29, 1996, 63 p

  • Engel G (1976) Untersuchungen zur Kristallchemie verschiedener Phosphate NaMIIPO4 und verwandter Verbindungen. N Jb Mineral Abh 127(2):197–211

    Google Scholar 

  • Eugster HP (1957) Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. J Chem Phys 26:1760–1761

    Article  Google Scholar 

  • Fontan F (1978) Etude minéralogique et essais expérimentaux sur des phosphates de fer et de manganèse des pegmatites des Jebilet (Maroc) et des Pyrénées (France). PhD thesis, Université Paul-Sabatier, Toulouse, 250 p

  • Fontan F, Huvelin P, Orliac M, Permingeat F (1976) La ferrisicklérite des pegmatites de Sidi-Bou-Othmane (Jebilet, Maroc) et le groupe des minéraux à structure de triphylite. Bull Soc française Minéral Cristall 99:274–286

    Google Scholar 

  • Fransolet A-M (1975) Etude minéralogique et pétrologique des phosphates de pegmatites granitiques. PhD thesis, University of Liège, 333 p

  • Fransolet A-M (1977) Le problème génétique des alluaudites. Bull Soc française Minéral Cristall 100:348–352

    Google Scholar 

  • Fransolet A-M, Abraham K, Speetjens J-M (1985) Evolution génétique et signification des associations de phosphates de la pegmatite d’Angarf-Sud, plaine de Tazenakht, Anti-Atlas, Maroc. Bull Minéral 108:551–574

    Google Scholar 

  • Fransolet A-M, Keller P, Fontan F (1986) The phosphate mineral associations of the Tsaobismund pegmatite, Namibia. Contrib Mineral Petrol 92:502–517

    Article  Google Scholar 

  • Fransolet A-M, Antenucci D, Fontan F, Keller P (1994) New relevant data on the crystal chemistry, and on the genetical problem of alluaudites and wyllieites. In: Abstracts of the 16th IMA general meeting, Pisa, pp 125–126

  • Fransolet A-M, Keller P, Fontan F (1997) The alluaudite group minerals: their crystallochemical flexibility and their modes of formation in the granite pegmatites. In: Abstracts of the meeting “phosphates: biogenic to exotic”, London

  • Fransolet A-M, Fontan F, Keller P, Antenucci D (1998) La série johnsomervilleite-fillowite dans les associations de phosphates de pegmatites granitiques de l’Afrique centrale. Can Mineral 36:355–366

    Google Scholar 

  • Fransolet A-M, Hatert F, Fontan F (2004) Petrographic evidence for primary hagendorfite in an unusual assemblage of phosphate minerals, Kibingo granitic pegmatite, Rwanda. Can Mineral 42:697–704

    Article  Google Scholar 

  • Ginzbourg AI (1960) Specific geochemical features of the pegmatitic process. In: International Geological Congress, report of the 21st session, Norden, Part 17, pp 111–121

  • Hatert F (2002) Cristallochimie et synthèse hydrothermale d’alluaudites dans le système Na–Mn–Fe–P–O: contribution au problème de la genèse de ces phosphates dans les pegmatites granitiques. PhD thesis, University of Liège, 247 p

  • Hatert F (2004a) The crystal chemistry of lithium in the alluaudite structure: a study of the (Na1−x Li x )1.5Mn1.5Fe3+ 1.5(PO4)3 solid solution (x = 0 to 1). Mineral Petrol 81:205–217

    Article  Google Scholar 

  • Hatert F (2004b) Etude cristallochimique et synthèse hydrothermale des alluaudites: contribution nouvelle au problème génétique des phosphates de fer et de manganèse dans les pegmatites granitiques et, partant, à celui de l’évolution de ces gisements. Mém Acad royale Sci Belgique, Cl Sci, Coll in-8, 3ème série XXI: 96 p

  • Hatert F, Keller P, Lissner F, Antenucci D, Fransolet A-M (2000a) First experimental evidence of alluaudite-like phosphates with high Li-content: the (Na1−x Li x )MnFe2(PO4)3 series (x = 0 to 1). Eur J Mineral 12:847–857

    Google Scholar 

  • Hatert F, Fransolet A-M, Grandjean F, Long GJ (2000b) Solid state syntheses and crystal chemistry of phosphates in the Na2O–MnO–Fe2O3–P2O5 system: preliminary results. J Conf Abstr 5:46

    Google Scholar 

  • Hatert F, Antenucci D, Fransolet A-M, Liégeois-Duyckaerts M (2002) The crystal chemistry of lithium in the alluaudite structure: a study of the (Na1−x Li x )CdIn2(PO4)3 solid solution (x = 0 to 1). J Solid State Chem 163:194–201

    Article  Google Scholar 

  • Hatert F, Hermann RP, Long GJ, Fransolet A-M, Grandjean F (2003) An X-ray Rietveld, infrared, and Mössbauer spectral study of the NaMn(Fe1−x In x )2(PO4)3 alluaudite-like solid solution. Am Mineral 88:211–222

    Google Scholar 

  • Hatert F, Long GJ, Hautot D, Fransolet A-M, Delwiche J, Hubin-Franskin MJ, Grandjean F (2004) A structural, magnetic, and Mössbauer spectral study of several Na–Mn–Fe-bearing alluaudites. Phys Chem Miner 31:487–506

    Article  Google Scholar 

  • Hatert F, Rebbouh L, Hermann RP, Fransolet A-M, Long GJ, Grandjean F (2005) Crystal chemistry of the hydrothermally synthesized Na2(Mn1−x Fe2+ x )2Fe3+(PO4)3 alluaudite-type solid solution. Am Mineral 90:653–662

    Article  Google Scholar 

  • Héreng P (1989) Contribution à l’étude minéralogique de phosphates de fer et de manganèse de la pegmatite de Buranga, Rwanda. Master thesis, University of Liège, 101 p

  • Hermann RP, Hatert F, Fransolet A-M, Long GJ, Grandjean F (2002) Mössbauer spectral evidence for next-nearest neighbor interactions within the alluaudite structure of Na1−x Li x MnFe2(PO4)3. Solid State Sci 4:507–513

    Article  Google Scholar 

  • Huvelin P, Orliac M, Permingeat F (1972) Ferri-alluaudite calcifère de Sidi-bou-Othmane (Jebilet, Maroc). Notes Serv géol Maroc 32(241):35–49

    Google Scholar 

  • Johnson CL, Lauretta DS, Buseck P (2000) A high-resolution transmission electron microscopy study of fine-grained phosphates in metal from the Bishunpur LL3.1 ordinary chondrite. In: 63rd Annual Meteoritical Society Meeting, Chicago, Illinois, p 5303

  • Keller P, Von Knorring O (1989) Pegmatites at the Okatjimukuju farm, Karibib, Namibia. Part I: phosphate mineral associations of the Clementine II pegmatite. Eur J Mineral 1:567–593

    Google Scholar 

  • Keller P, Fransolet A-M, Fontan F (1994) Triphylite–lithiophilite and triplite–zwieselite in granitic pegmatites: their textures and genetic relationships. N Jb Mineral Abh 168(2):127–145

    Google Scholar 

  • Keller P, Hatert F, Lissner F, Schleid T, Fransolet A-M (2006) Hydrothermal synthesis and crystal structure of Na(Na,Mn)7Mn22(PO4)180.5H2O, a new compound of fillowite structure type. Eur J Mineral (in press)

  • Khorari S (1997) Cristallochimie des arséniates de structure alluaudite. PhD thesis, University of Liège

  • Lahti SI (1981) On the granitic pegmatites of the Eräjärvi area in Orivesi, southern Finland. Geol Surv Finland Bull 314:82

    Google Scholar 

  • Lauretta DS, Buseck PR (2000) Chondrule formation and volatile recondensation recorded in an opaque assemblage from the Bishunpur chondrite. Lunar and Planetary Science XXXI, Houston, Texas, p 1136

  • Le Page Y, Donnay G (1977) The crystal structure of the new mineral marićite, NaFePO4. Can Mineral 15:518–521

    Google Scholar 

  • London D (1986) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments. Am Mineral 71:376–395

    Google Scholar 

  • London D, Wolf MB, Morgan GB, Gallego Garrido M (1999) Experimental silicate–phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos, Badajoz, Spain. J Petrol 40:215–240

    Article  Google Scholar 

  • London D, Morgan GB, Wolf MB (2001) Amblygonite–montebrasite solid solutions as monitors of fluorine in evolved granitic and pegmatitic melts. Am Mineral 86:225–233

    Google Scholar 

  • Mason B (1941) Minerals of the Varuträsk pegmatite. XXIII. Some iron–manganese phosphate minerals and their alteration products, with special reference to material from Varuträsk. Geol Fören Stockholm Förh 63:117–175

    Google Scholar 

  • Moore PB (1971) Crystal chemistry of the alluaudite structure type: contribution to the paragenesis of pegmatite phosphate giant crystals. Am Mineral 56:1955–1975

    Google Scholar 

  • Moore PB (1972) Natrophilite, NaMnPO4, has ordered cations. Am Mineral 57:1333–1344

    Google Scholar 

  • Moore PB, Ito J (1979) Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Mineral Mag 43:227–235

    Article  Google Scholar 

  • Morgan GB, London D (1987) Alteration of amphibolic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. Am Mineral 72:1097–1121

    Google Scholar 

  • Moring J, Kostiner E (1986) The crystal structure of NaMnPO4. J Solid State Chem 61:379–383

    Google Scholar 

  • Norton FJ (1955) Dissociation pressures of iron and copper oxides. General Electric Research Laboratory Report, 55-R1–1248

  • O’Neill HSC (1988) Systems Fe–O and Cu–O: thermodynamic data for the equilibria Fe–“FeO”, Fe–Fe3O4, “FeO”–Fe3O4, Fe3O4–Fe2O3, Cu–Cu2O, and Cu2O–CuO from emf measurements. Am Mineral 73:470–486

    Google Scholar 

  • O’Neill HSC, Pownceby MI (1993) Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe–“FeO”, Co–CoO, Ni–NiO and Cu–Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contrib Mineral Petrol 114:296–314

    Article  Google Scholar 

  • Quensel P (1937) Minerals of the Varuträsk Pegmatite. I. The lithium–manganese phosphates. Geol Fören Stockholm Förh 59(1):77–96

    Google Scholar 

  • Quensel P (1940) Minerals of the Varuträsk Pegmatite. XVII. Further comments on the minerals varulite and alluaudite. Geol Fören Stockholm Förh 62(3):297–302

    Google Scholar 

  • Quensel P (1957) The paragenesis of the Varuträsk pegmatite, including a review of its mineral assemblage. Arkiv för Mineralogi och Geologi 2(2):9–125

    Google Scholar 

  • Redhammer GJ, Tippelt G, Bernroider M, Lottermoser W, Amthauer G, Roth G (2005) Hagendorfite (Na,Ca)MnFe2(PO4)3 from type locality Hagendorf (Bavaria, Germany): crystal structure determination and 57Fe Mössbauer spectroscopy. Eur J Mineral 17:915–932

    Article  Google Scholar 

  • Robinson GW, Velthuizen JV, Ansell HG, Sturman BD (1992) Mineralogy of the Rapid Creek and Big Fish River area, Yukon Territory. Mineral Rec 23(4):1–47

    Google Scholar 

  • Roda E, Fontan F, Pesquera A, Velasco F (1996) The phosphate mineral association of the granitic pegmatites of the Fregeneda area (Salamanca, Spain). Mineral Mag 60:767–778

    Article  Google Scholar 

  • Roda Robles E, Fontan F, Pesquera Pérez A, Keller P (1998) The Fe–Mn phosphate associations from the Pinilla de Fermoselle pegmatite, Zamora, Spain: occurrence of kryzhanovskite and natrodufrénite. Eur J Mineral 10:155–167

    Google Scholar 

  • Roda E, Pesquera A, Gil-Crespo PP, Torres-Ruiz J, Fontan F (2005) Origin and internal evolution of the Li–F–Be–B–P-bearing Pinilla de Fermoselle pegmatite (Central Iberian Zone, Zamora, Spain). Am Mineral 90:1887–1899

    Article  Google Scholar 

  • Solodovnikov SF, Klevtsov PV, Solodovnikova ZA, Glinskaya LA, Klevtsova RF (1998) Binary molybdates K4M2+(MoO4)3 (M2+ = Mg, Mn, Co) and crystal structure of K4Mn(MoO4)3. J Struct Chem 39(2):230–237

    Article  Google Scholar 

  • Stefanidis T, Nord AG (1984) Structural studies of thortveitite-like dimanganese diphosphate, Mn2P2O7. Acta Crystallogr C40:1995–1999

    Google Scholar 

  • Sturman BD, Mandarino JA, Corlett MI (1977) Marićite, a sodium iron phosphate from the Big Fish River area, Yukon Territory, Canada. Can Mineral 15:396–398

    Google Scholar 

  • Tsyrenova GD, Solodovnikov SF, Zolotova ES, Tsybikova BA, Bazarova ZG (2000) Phase formation in the K2O(K2CO3)–CdO–MoO3 system. Russ J Inorg Chem 45(1):103–108

    Google Scholar 

  • Tuttle OF (1949) Two pressure vessels for silicate–water studies. Geol Soc Am Bull 60:1727–1729

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks are due to J. Wautier, F. Fontan, and P. de Parseval, who performed the electron microprobe analyses, as well as to T. Baller, M. Burchard, and T. Fockenberg, who helped us to use the hydrothermal laboratory of the Ruhr-University of Bochum, Germany. FH acknowledges the F.N.R.S. (Belgium) for a position of “Chargé de Recherches” and for grants 1.5.113.05.F and 1.5.098.06.F, as well as the Alexander von Humboldt Foundation (Germany) for a Fellowship at Bochum, during the 2004–2005 academic year.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Hatert.

Additional information

Communicated by J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatert, F., Fransolet, AM. & Maresch, W.V. The stability of primary alluaudites in granitic pegmatites: an experimental investigation of the Na2(Mn2−2x Fe1+2x )(PO4)3 system. Contrib Mineral Petrol 152, 399–419 (2006). https://doi.org/10.1007/s00410-006-0115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0115-2

Keywords

Navigation