Skip to main content
Log in

Immunohistochemical investigations of Myzostoma cirriferum and Mesomyzostoma cf. katoi (Myzostomida, Annelida) with implications for the evolution of the myzostomid body plan

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Although part of the annelid radiation, Myzostomida exhibit a highly specialized body plan that lacks many typical annelid characters. Their annelid ancestry is evident from their trochophora-like larvae, adult myoanatomy and parts of the nervous system, whereas segmentation is considered at best to be incomplete in myzostomids. We analyzed the morphology of two myzostomid species, the ectocommensal Myzostoma cirriferum and the endoparasitic Mesomyzostoma cf. katoi using a broad set of fluorescent markers to reveal the degree of segmentation in myzostomids. We used immunocytochemical and classical fluorescent staining methods combined with confocal laser-scanning microscopy to visualize tissues labeled with antibodies directed against classical invertebrate neurotransmitters (serotonin, dopamine, FMRFamide), synapsin, which labels nerve cell terminals, and the marker phalloidin–rhodamine which binds F-actin in muscle. Our data provide a broad body of additional evidence for the segmented origin of Myzostomida. It becomes apparent that the adult nervous system of M. cirriferum exhibits signs of pseudoradial symmetry with repetitive patterns of putative FMRFamide, serotonin and dopamine-like immunoreactivity. An analysis of the staining patterns in juvenile M. cirriferum yielded evidence for positional changes, as well as additions and reductions of neuronal structures during development. Interestingly, the neuroanatomy and myoanatomy of Mesomyzostoma cf. katoi indicate further reductions of neuronal and myoanatomical patterns in this species. Notably this taxon shows a presumably secondarily evolved cylindrical and strictly bilateral morphology, which is supposed to have evolved from a flat, disk-shaped Myzostoma-like ancestor with an underlying pseudoradial symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beltz BS, Kravitz EA (1986) Aminergic and peptidergic neuromodulation in Crustacea. J Exp Biol 124:115–141

    CAS  Google Scholar 

  • Bleidorn C, Eeckhaut I, Podsiadlowski L, Schult N, McHugh D, Halanych KM, Milinkovitch MC, Tiedemann R (2007) Mitochondrial genome and nuclear sequence data support Myzostomida as part of the annelid radiation. Mol Biol Evol 24:1690–1701

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann N, Wanninger A (2008) Larval neurogenesis in Sabellaria alveolata reveals plasticity in polychaete neural patterning. Evol Dev 10:606–618

    Article  PubMed  Google Scholar 

  • Dietzel ID, Gottmann K (1988) Development of dopamine-containing neurons and dopamine uptake in embryos of Hirudo medicinalis. Dev Biol 128:277–283

    Article  CAS  PubMed  Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749

    Article  CAS  PubMed  Google Scholar 

  • Eeckhaut I, Lanterbecq D (2005) Myzostomida: a review of phylogeny and ultrastructure. Hydrobiologia 535(536):253–275

    Google Scholar 

  • Eeckhaut I, McHugh D, Mardulyn P, Tiedemann R, Monteyne D, Jangoux M, Milinkovitch MC (2000) Myzostomida: a link between trochozoans and flatworms? Proc R Soc Lond B Biol Sci 267:1383–1392

    Article  CAS  Google Scholar 

  • Eeckhaut I, Fievez L, Müller MCM (2003) Larval development of Myzostoma cirriferum (Myzostomida). J Morphol 258:269–283

    Article  PubMed  Google Scholar 

  • Fischer AHL, Heinrich T, Arendt D (2010) The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool 7:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Girosi L, Ramoino P, Diaspro A, Gallus L, Ciarcia G et al (2005) FMRFamide-like immunoreactivity in the sea-fan Eunicella cavolini (Cnidaria: Octocorallia). Cell Tissue Res 320:331–336

    Article  CAS  PubMed  Google Scholar 

  • Graff L (1877) Das Genus Myzostoma (F.S. Leuckart). Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Halanych KM, Dahlgren TG, McHugh D (2002) Unsegmented annelids? Possible origins of four lophotrochozoan worm taxa. Integr Comp Biol 42:678–684

    Article  PubMed  Google Scholar 

  • Hartman O (1969) Atlas of the sedentariate polychaetous annelids from California. Allan Hancock Foundation, University of Southern California, Los Angeles

    Google Scholar 

  • Hartmann S, Helm C, Nickel B, Meyer M, Struck TH, Tiedemann R, Selbig J, Bleidorn C (2012) Exploiting gene families for phylogenomic analysis of myzostomid transcriptome data. PLoS One 7:e29843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, Freimann T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26:4701–4713

    Article  CAS  PubMed  Google Scholar 

  • Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguna J, Bailly X, Jondelius U, Wiens M, Muller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B Biol Sci 276:4261–4270

    Article  Google Scholar 

  • Helm C, Bernhart SH, Höner zu Siederdissen C, Nickel B, Bleidorn C (2012) Deep sequencing of small RNAs confirms an annelid affinity of Myzostomida. Mol Phylogenet Evol 64:198–203

    Article  CAS  PubMed  Google Scholar 

  • Helm C, Weigert A, Mayer G, Bleidorn C (2013) Myoanatomy of Myzostoma cirriferum (Annelida, Myzostomida): implications for the evolution of the myzostomid body plan. J Morphol 274:456–466

    Article  PubMed  Google Scholar 

  • Hessling R (2002) Metameric organisation of the nervous system in developmental stages of Urechis caupo (Echiura) and its phylogenetic implications. Zoomorphology 121:221–234

    Article  Google Scholar 

  • Hessling R (2003) Novel aspects of the nervous system of Bonellia viridis (Echiura) revealed by the combination of immunohistochemistry, confocal laser-scanning microscopy and three-dimensional reconstruction. Hydrobiologia 496:225–239

    Article  Google Scholar 

  • Hessling R, Westheide W (2002) Are Echiura derived from a segmented ancestor? Immunohistochemical analysis of the nervous system in developmental stages of Bonellia viridis. J Morphol 252:100–113

    Article  PubMed  Google Scholar 

  • Ishida Y, Hashiguchi H, Todaka K, Kuwahara I, Ishizuka Y, Nakane H, Uchimara D, Nishimori T, Mitsuyama Y (1998) Serotonergic activity in the rat striatum after intrastriatal transplantation of fetal nigra as measured by microdialysis. Brain Res 788:207–214

    Article  CAS  PubMed  Google Scholar 

  • Jägersten G (1936) Zur Kenntnis der Parapodialborsten bei Myzostomum. Zool Bidr fran Uppsala 16:283–299

    Google Scholar 

  • Klagges BRE, Gertrud Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Dietmar Reisch D, Schaupp M, Buchner S, Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165

    CAS  PubMed  Google Scholar 

  • Kotikova EA, Raikova OI, Reuter M, Gustafsson MKS (2005) Rotifer nervous system visualized by FMRFamide and 5-HT immunocytochemistry and confocal laser scanning microscopy. Hydrobiologia 546:239–248

    Article  Google Scholar 

  • Kristof A, Wollesen T, Wanninger A (2008) Segmental mode of neural patterning in Sipuncula. Curr Biol 18:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Kristof A, Wollesen T, Maiorova AS, Wanninger A (2011) Cellular and muscular growth patterns during sipunculan development. J Exp Zool Part B 316:227–240

    Article  Google Scholar 

  • Lanterbecq D, Rouse GW, Milinkovitsch MC, Eeckhaut I (2006) Molecular phylogenetic analyses indicate multiple independent emergences of parasitism in Myzostomida (Protostomia). Syst Biol 55:208–227

    Article  PubMed  Google Scholar 

  • Lanterbecq D, Bleidorn C, Michel S, Eeckhaut I (2008) Locomotion and fine structure of parapodia in Myzostoma cirriferum (Myzostomida). Zoomorphology 127:59–68

    Article  Google Scholar 

  • Lanterbecq D, Rouse GW, Eeckhaut I (2009) Bodyplan diversification in crinoid-associated myzostomes (Myzostomida, Protostomia). Invertebr Biol 128:283–301

    Article  Google Scholar 

  • Leuckart FS (1836) In Beziehung auf der Haarstern (Comatula) und Pentacrinus europaeus, so wie auf das Schmarotzerthier auf Comatula. Notiz. Gebiete Natur- und Heilk Gesammelt Mitgetheilt Froriep 59:129–131

    Google Scholar 

  • Mayer G, Kauschke S, Rüdiger J, Stevenson PA (2013) Neural markers reveal a one-segmented head in tardigrades (water bears). PLoS One 8(3):e59090. doi:10.1371/journal.pone.0059090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDougall C, Chen W-C, Shimeld SM, Ferrier DEK (2006) The development of the larval nervous system, musculature and ciliary bands of Pomatoceros lamarckii (Annelida): heterochrony in polychaetes. Front Zool 3:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Michel S, Schoch K, Stevenson PA (2000) Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: an immunocytochemical study. J Comp Neurol 425:244–256

    Article  CAS  PubMed  Google Scholar 

  • Moroz L, Nezlin L, Elofsson R, Sakharov D (1994) Serotonin- and FMRFamide-immunoreactive nerve elements in the chiton Lepidopleurus asellus. Cell Tissue Res 275:277–282

    Article  Google Scholar 

  • Müller J (1841) Über die Gattungen und Arten der Comatulen. Archiv für Naturgeschichte 7:139–148

    Google Scholar 

  • Müller MCM (2006) Polychaete nervous systems: ground pattern and variations—cLS microscopy and the importance of novel characteristics in phylogenetic analysis. Integr Comp Biol 46:125–133

    Article  PubMed  Google Scholar 

  • Müller MCM, Westheide W (2000) Structure of the nervous system of Myzostoma cirriferum (Annelida) as revealed by immunohistochemistry and cLSM analyses. J Morphol 245:87–98

    Article  PubMed  Google Scholar 

  • Nielsen C (2012) Animal evolution—interrelationships of the living phyla. Oxford University Press, New York

    Google Scholar 

  • Okada Y (1933) Mesomyzostoma katoi n. sp. an interesting myzostome found in the gonad of Comanthus japonicus. Annot Zool Jpn 14:185–188

    Google Scholar 

  • Orrhage L, Müller MCM (2005) Morphology of the nervous system of Polychaeta (Annelida). Hydrobiologia 535(536):79–111

    Google Scholar 

  • Ott SR (2008) Confocal microscopy in large insect brains: zinc–formaldehyde fixation improves synapsin immunostaining and preservation of morphology in whole-mounts. J Neurosci Methods 172:220–230

    Article  CAS  PubMed  Google Scholar 

  • Passamaneck Y, Halanych KM (2006) Lophotrochozoan phylogeny assessed with LSU and SSU data: evidence of lophophorate polyphyly. Mol Phylogenet Evol 40:20–28

    Article  CAS  PubMed  Google Scholar 

  • Pietsch A, Westheide W (1987) Protonephridial organs in Myzostoma cirriferum (Myzostomida). Acta Zool 68:195–203

    Article  Google Scholar 

  • Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000) The brain of the Nemertodermatida (Platyhelminthes) as revealed by anti-5HT and anti-FMRFamide immunostainings. Tissue Cell 32:358–365

    Article  CAS  PubMed  Google Scholar 

  • Reglödi D, Slezak S, Lubics A, Szelier M, Elekes K et al (1997) Distribution of FMRFamide-like immunoreactivity in the nervous system of Lumbricus terrestris. Cell Tissue Res 288:213–229

    Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    Article  PubMed Central  PubMed  Google Scholar 

  • Rothe B, Schmidt-Rhaesa A (2009) Architecture of the nervous system in two Dactylopodola species (Gastrotricha, Macrodasyida). Zoomorphology 128:227–246

    Article  Google Scholar 

  • Rouse GW, Fauchald K (1997) Cladistics and polychaetes. Zool Scr 26:139–204

    Article  Google Scholar 

  • Rouse GW, Pleijel F (2001) Polychaetes. Oxford University Press, London

    Google Scholar 

  • Schlawny A, Hamann T, Müller MA, Pfannenstiel HD (1991) The catecholaminergic system of an annelid (Ophryotrocha puerilis, Polychaeta). Cell Tissue Res 265:175–184

    Article  CAS  Google Scholar 

  • Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, Oxford

    Book  Google Scholar 

  • Seaver EC (2003) Segmentation: mono- or polyphyletic? Int J Dev Biol 47:583–595

    PubMed  Google Scholar 

  • Semper C (1858) Zur Anatomie und Entwicklungsgeschichte der Gattung Myzostoma. Z Wiss Zool 9:48–65

    Google Scholar 

  • Sivasubramanian P (2004) FMRFamide-like immunoreactivity in the ventral ganglion of the fly Sarcophaga bullata: metamorphic changes. Comp Biochem Phys C 99:507–512

    Article  Google Scholar 

  • Spörhase-Eichmann U, Winkler M, Schürmann F-W (1998) Dopaminergic sensory cells in the epidermis of the earthworm. Naturwissenschaften 85:547–550

    Article  Google Scholar 

  • Steinbusch HWM, Tilders FJH (1987) Immunocytochemical techniques for light microscopical localization of dopamine, noradrenaline, adrenaline, serotonin and histamine in the central nervous system. In: Steinbusch HWM (ed) Monoaminergic neurones, light microscopy and ultrastructure. Wiley, Chichester, pp 125–166

    Google Scholar 

  • Steinbusch HWM, Vliet SPV, Bol JGJM, Vente JD (1991) Development and application of antibodies to primary (DA- L-DOPA) and secondary (cGMP) messengers: a technical note. In: Calas A, Eugene D (eds) Neurocytochemical methods. NATO ASI series H 58. Springer, Berlin

    Google Scholar 

  • Stevenson PA, Pflüger HJ, Eckert M, Rapus J (1994) Octopamine-like immunoreactive neurones in locust genital abdominal ganglia. Cell Tissue Res 275:299–308

    Article  Google Scholar 

  • Stevenson PA, Hofmann HA, Schoch K, Schildberger K (2000) The fight and flight responses of crickets depleted of biogenic amines. J Neurobiol 43:107–120

    Article  CAS  PubMed  Google Scholar 

  • Struck TH, Paul C, Hill N, Hartmann S, Hösel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, Bleidorn C (2011) Phylogenomic analyses unravel annelid evolution. Nature 471:95–98

    Article  CAS  PubMed  Google Scholar 

  • Voronezhskaya EE, Tsitrin EB, Nezlin LP (2003) Neuronal development in larval polychaete Phyllodoce maculata (Phyllodocidae). J Comp Neurol 455:299–309

    Article  PubMed  Google Scholar 

  • Wanninger A, Koop D, Bromham L, Noonan E, Degnan BM (2005) Nervous and muscle system development in Phascolion strombus (Sipuncula). Dev Genes Evol 215:509–518

    Article  PubMed  Google Scholar 

  • Wanninger A, Kristof A, Brinkmann N (2009) Sipunculans and segmentation. Commun Intergr Biol 2:56–59

    Article  CAS  Google Scholar 

  • Westheide W, Rieger R (1996) Spezielle Zoologie. Teil 1: Einzeller und Wirbellose Tiere. Fischer, Stuttgart

    Google Scholar 

  • Wheeler WM (1896) The sexual phases of Myzostoma. Mitt Zool Stn Neapel 12:227–302

    Google Scholar 

  • Zrzavý J, Hypsa V, Tietz DF (2001) Myzostomida are not annelids: molecular and morphological support for a clade of animals with anterior sperm flagella. Cladistics 17:170–198

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the DFG in the priority Program SPP 1174 “Deep Metazoan Phylogeny” (BL 787/2-2) and an EU ASSEMBLE grant (No. 227799; http://www.assemblemarine.org) to CB and National Science Foundation grant Collaborative Research: Assembling the Echinoderm Tree of Life (DEB-1036368) to GWR. We are thankful to Barbara Goettgens, Georg Mayer and Martin Schlegel for cooperativeness in use of the cLSM and laboratory facilities. Additionally, we thank the staff of the Station Biologique Roscoff (France) for specimen supply and providing laboratory facilities, Philippe Bouchet (Muséum national d’Histoire naturelle, Paris), who organized the Madang field trip (Papua New Guinea Revisited) and James Thomas (Nova Southeastern University) and the Christensen Foundation for support and funding for Madang collecting. CH was supported by special funds provided by the University of Leipzig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conrad Helm.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helm, C., Stevenson, P.A., Rouse, G.W. et al. Immunohistochemical investigations of Myzostoma cirriferum and Mesomyzostoma cf. katoi (Myzostomida, Annelida) with implications for the evolution of the myzostomid body plan. Zoomorphology 133, 257–271 (2014). https://doi.org/10.1007/s00435-014-0221-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-014-0221-z

Keywords

Navigation