Skip to main content
Log in

Cyclic volcanic stratigraphy in a late ordovician marginal basin, West Norwegian Caledonides

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The well-preserved extrusive sequence of the Solund-Stavfjord Ophiolite Complex (SSOC) in the West Norwegian Caledonides enables reconstruction of the uppermost oceanic crust that developed in a marginal basin. Basaltic sheet flows, pillow lavas and volcanic breccias are the main components of the extrusive sequence and show stratigraphic and structural evidence for a cyclic development. The first stage in a volcanic cycle is characterized by high extrusion rates yielding sheet flows, commonly with the thickest flow units at the base. Sequences of sheet flows can be correlated laterally for at least 6.5 km. Pillow lavas succeed the sheet flows later in a volcanic cycle with progressively smaller pillows forming at decreasing extrusion rates. Volcanic breccias occur towards the end of a volcanic cycle, but may also occur at lower stratigraphie levels. They are made generally of pillow breccias and hyaloclastites. The extrusive sequence of the SSOC oceanic crust was constructed through seven volcanic cycles that resulted in stratigraphic units with thicknesses ranging from 40 to 225 m. This architecture is comparable to sequences in in situ oceanic crust developed along slow- to intermediate-spreading ridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsaker E, Furnes H (1994) The geochemistry of the Sunnfjord Melange: sediment mixing from different sources during obduction of the Solund-Stavfjord Ophiolite Complex, Norwegian Caledonides. Geol Mag 131:105–121

    Google Scholar 

  • Alt JC, Kinoshita H, Stokking LB et al. (1993) Proc ODP Init Rep 148 (Ocean Drilling Program, College Station, Texas), 352 pp

    Google Scholar 

  • Andersen TB, Skjerlie KP, Furnes H (1990) The Sunnfjord Melange, evidence of Silurian ophiolite accretion in the west Norwegian Caledonides. J Geol Soc Lond 147:59–68

    Article  Google Scholar 

  • Ayadi M, Pezard PA, Laverne C, Bronner G (1998) Multi-scalar structure at DSDP/ODP site 504, Costa Rica Rift, I. Stratigraphy of eruptive products and accretion processes, in: Harvey PK, Lowell MA (eds) Core-log integration. Geol Soc Lond Spec Pubi 136:297–310

  • Ballard RD, Moore JG (1977) Photographic atlas of the Mid-Atlantic Ridile Rift Vallev. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ballard RD, Holcomb RD, van Andel TH (1979) The Galapagos Rift at 86° W: 3. Sheet flows, collapse pits and lava lakes of the rift valley. J Geophys Res 884:5407–5422

    Article  Google Scholar 

  • Baragar WRA (1984) Pillow formation and layered flows in the Circum-Superior Belt of eastern Hudson Bay. Can J Earth Sci 21:781–792

    Google Scholar 

  • Bergh SG, Sigvaldason GE (1991) Pleistocene mass-flow deposits of basaltic hvaloclastite on a shallow submarine shelf. South Iceland. BulfVolcanoI 53:597–611

    Google Scholar 

  • Bonatti E, Harrison CGA (1988) Eruption styles of basalt in oceanic spreading ridges and seamounts: effect of magma temperature and viscosity. J Geophys Res 93:2967–2980

    Article  Google Scholar 

  • Cas RAE, Wright JV (1988) Volcanic successions, modern and ancient. Unwin Hyman, London

    Google Scholar 

  • Cashman KV, Pinkerton H, Stephenson PJ (1998) Long lava flows. J Geophys Res 103:27281–27289

    Article  Google Scholar 

  • Cousineau P, Dimroth E (1982) Interpretation of the relations between massive, pillowed and brecciated facies in an Archean submarine andésite volcano-Amulet andésite, Rouyn-Noranda, Canada. J Volcanol Geotherm Res 13:83–102

    Article  Google Scholar 

  • Crane K, Ballard RD (1981) Volcanics and structures of the FAMOUS-Narrowgate Rift: evidence for cyclic evolution. J Geophys Res 86:5 112–5 124

    Article  Google Scholar 

  • Dilek Y (1998) Structure and tectonics of intermediate-spread oceanic crust drilled at DSDP/ODP Holes 504B and 896A, Costa Rica Rift. Geol Soc Lond Spec Pubi 131:179–197

    Google Scholar 

  • Dilek Y, Furnes H, Skjerlie KP (1997) Propagating rift tectonics of a Caledonian marginal basin: multi-stage seafloor spreading history of the Solund-Stavfjord ophiolite in western Norwav. Tectonophysics 280:213–238

    Article  Google Scholar 

  • Dimroth E, Cousineau P (1978) Structure and organization of Archean subaqueous basalt Hows, Rouvn-Noranda area, Quebec, Canada. Can J Earth Sci 15:902–918

    Google Scholar 

  • Dmitriev L, Heirtzler J et al. (1978) Init Rep DSDP, 46. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Einaudi F, Pezard PA, Cocheme J-J, Coulon C, Laverne C, Godard M (2000) Petrography, geochemistry and physical properties of a continuous extrusive section from the Hilti massif, Semail ophiolite. Mar Geophys Res 21:387–407

    Article  Google Scholar 

  • Francheteau J, Ballard RD (1983) The East Pacific Rise near 21°N, 13°N and 20°S: inferences for a long strike variabilty of axial processes of the mid-ocean ridge. Earth Planet Sci Lett 64:93–1

    Article  Google Scholar 

  • Fridleifsson IB, Furnes H, Atkins FB (1982) Subglacial volcanics: on the control of magma chemistry and pillow dimensions. J Volcanol Geotherm Res 13:103–117

    Article  Google Scholar 

  • Furnes H (1972) Meta-hyaloclastite breccias associated with Or-dovician pillow lavas in the Solund area, West Norway. Norsk Geol Tidsskr 52:385–407

    Google Scholar 

  • Furnes H, Fridleifsson IB (1978) The relationship between chemistry and axial dimensions of alkali olivine basaltic and olivine thoÍeiitic pillow lava. Bull Volcanol 41:136–146

    Article  Google Scholar 

  • Furnes H, Fridleifsson IB (1979) Pillow block breccia: occurrences and mode of formation. N Jahrb Geol Paläontol Mh 3:147–154

    Google Scholar 

  • Furnes H, Skjerlie KP, Pedersen RB, Andersen TB, Stillman CJ, Suthren RJ, Tysseland M, Garmann LB (1990) The Solund-Stavfjord Ophiolite Complex and associated rocks, West Norwegian Caledonides: geology, geochemistry and tectonic environment. Geol Mag 127:209–224

    Article  Google Scholar 

  • Furnes H, Johansen RJ, Skjerlie KP (1992) FeTi-poor and FeTi-rich basalts in the Solund-Stavfjord ophiolite complex, west Norwegian Caledonides: relationships and genesis. N Jahrb Min Mh 4:153–168

    Google Scholar 

  • Furnes H, Dilek Y, Skjerlie KP, Ryttvad HL, Fonneland HC (1998) Variations in basaltic geochemistry along a propagating rift of the Late Ordovician marginal basin of the West Norwegian Caledonides. Terra Nova 10:21–26

    Article  Google Scholar 

  • Furnes H, Skjerlie KP, Dilek Y (2000) Petrology, tectonics, and hydrothermal alteration of a fossil backarc oceanic crust: Solund-Stavfjord Ophiolite Complex of western Norwegian Caledonides — a review. In: Dilek Y, Moores EM, Nicolas A (eds) Oph ioli tes and Oceanic Crust: New Insight from Field Studies and Ocean Drilling Program. Geol Soc Am Spec Pap 349:451–469

  • Hargreaves R, Ayres LD (1979) Morphology of Archean metaba-salt flows, Utik Lake, Manitoba. Can J Earth Sci 16:1452–1466

    Google Scholar 

  • Kappel ES, Ryan WBF (1986) Volcanic episodicity and a non-steady state rift vally along northeast Pacific spreading centres: evidence from Sea MARK I. J Geophvs Res 91:13925–13940

    Article  Google Scholar 

  • Karson JA (1998) Internal structure of oceanic lithosphère: a perspective from tectonic windows. In: Buck R, Karson J, Delaney P, Sempere JC (eds) Faulting and magmatism at mid-ocean ridges. Am Geophys Union Monogr 106:177–218

  • Karson JA, Thompson G, Humphris SE, Edmond JM, Bryan WB, Brown JR, Winters AT, Pockalny RA, Casey JF, Campbell AC, Klinkhammer G, Palmer MR, Kinzler RJ, Sulanowska MM (1987) Along-axis variations in seafloor spreading in the MARK area. Nature 328:681–685

    Article  Google Scholar 

  • Keszthelyi L, Self S (1998) Some physical requirements for the emplacement of long basaltic lava flows. J Geophvs Res 103:27303–27324

    Article  Google Scholar 

  • Lonsdale P, Batiza R (1980) Hyaloclastite and lava flows on voting seamounts examined with a submersible. Geol Soc Am Bull 91:545–554

    Article  Google Scholar 

  • Macdonald KC (1982) Mid-ocean ridges: fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Ann Rev Earth Planet Sci Lett 10:155–190

    Article  Google Scholar 

  • Malpas J, Williams D (1991) Geology of the area surrounding the CY-1 and CY-1A boreholes, In: Malpas J, Robinson PT. Xenophontos C (eds) Cvprus Crustal Studv Project Geol Surv Can Pap 90:29–40

  • Moore JG (1965) Petrologv of deep-sea basalt near Hawaii. Am J Sci 263:40–52

    Google Scholar 

  • Narland JM, Dick HJB, and the Leg 176 Shipboard Scientific Party (1998) A long gabbro section in the ocean crust: results of Leg 176 drilling, Southwestern Indian Ridge. JOIDES J 24:11–14

    Google Scholar 

  • Parson I, Hawkins J, Allan J et al. (1992) Proc ODP Init Rep 135, (Ocean Drilling Program, College Station, Texas), 677 pp

    Google Scholar 

  • Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. Geol Soc Spec Publ 16:77–94

    Article  Google Scholar 

  • Phipps Morgan J, Harding A, Orcutt J, Kent G, Chen YJ (1994) An observational and theoretical synthesis of magma chamber geometry and crustal genesis along a mid-ocean ridge spreading center. In: Ryan MP (ed) Magmatic systems. Academic Press, London, pp 139–178

    Chapter  Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors controlling the length of channel-fed lava flows. Bull Volcanol 56:108–120

    Google Scholar 

  • Renard V, Hekinian R, Francheteau J, Ballard RD, Backer H (1985) Submersible observations at the axis of the ultra-fast spreading East pacific Rise (17°30′ to 2°30′S). Earth Planet Sci Lett 75:339–353

    Article  Google Scholar 

  • Robinson PT, Flower MFJ, Swanson DA, Staudigel H (1979) Li-thology and eruptive stratigraphv of Cretaceous oceanic crust, western Atlantic Ocean. Init Rep DSDP, LI, LU, LUI. U.S. Government Printing Office, Washington D.C., pp 1535–1555

    Google Scholar 

  • Rosendahl RB, Hekinian R et al. (1980) Init Rep of the Deep Sea Drilling Project 54. U.S. Government Printing Office, Washington

    Book  Google Scholar 

  • Ryttvad HL, Fumes H, Skjerlie KP, Rolfsen R (2000) Geochemistry and pedogenesis of extrusive rocks, dykes and high-level plutonic rocks on the island of Oldra, Solund-Stavfjord Ophiolite Complex, western Norwav. Norsk Geol Tidsskr 80:97–110

    Article  Google Scholar 

  • Schmincke H-U, Bednarz U (1990) Pillow, sheet flow and breccia flow volcanoes and volcano-tectonic hydrothermal cycles in the Extrusive Series of the northeastern Troodos ophiolite (Cyprus). In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites oceanic crustal analogues. Proc Symp “Troodos 1987”. The geological Survey Department, Ministry of Agriculture and Natural Resources, Nicosia, Cyprus, pp 185–206

    Google Scholar 

  • Skjerlie KP, Furnes H (1990) Evidence for a fossil transform fault in the Solund-Stavfjord Ophiolite Complex: West Norwegian Caledonides. Tectonics 9:1631–1648

    Article  Google Scholar 

  • Skjerlie KP, Furnes H, Johansen RJ (1989) Magmatic development and tectonomagmatic models for the Solund-Stavfjord Ophiolite Complex, West Norwegian Caledonides. Lithos 23:137–151

    Article  Google Scholar 

  • Smith DK, Cann JR (1993) Building the crust at the Mid-Atlantic Ridge. Nature 365:707–715

    Article  Google Scholar 

  • Smith TL, Batiza R (1989) New field and laboratory evidence for the origin of hyaloclastite flows on seamount summits. Bull Volcanol 51:96–114

    Article  Google Scholar 

  • Snyder GL, Fraser GD (1963) Pillowed lavas. 1. Intrusive layered lava pods and piloted lava, Unalaska Island, Alaska. US Geol Surv Prof Pap 454-B: 1–23

    Google Scholar 

  • Staudigel H, Schmincke H-U (1984) The Pliocene seamount series of La Palma/Canarv Islands. J Geophvs Res 89:11195–11215

    Article  Google Scholar 

  • Staudigel H, Plank T, White B, Schmincke HU (1996) Geochemi-cal fluxes during seafloor alteration of the upper oceanic crust: DSDP sites 417 and 418. Geophys Monogr 96:19–36

    Google Scholar 

  • Taylor B, Natland J (1995) Active margins and marginal basins of the Western Pacific. Am Geophvs Union Geophvs Monogr 88:1–417

    Google Scholar 

  • Van Andel TH, Ballard RD (1979) The Galapagos Rift at 86°W. 2 Volcanism, structure and evolution of the rift vallev. J Geophys Res 84-B 10:5390–5406

    Article  Google Scholar 

  • Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc Lond A 274:107–118

    Article  Google Scholar 

  • Walker GPL (1992) Morphometric study of pillow-size spectrum among pillow lavas. Bull Volcanol 54:459–474

    Article  Google Scholar 

  • Wilson L, Head JW (1981) Ascent anil eruption of basaltic magma on the Earth and Moon. J Geophys Res 86 B4:2971–3001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Furnes.

Additional information

Published online: 6 April 2001

Editorial responsibility: J.S. Gilbert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furnes, H., Hellevang, B. & Dilek, Y. Cyclic volcanic stratigraphy in a late ordovician marginal basin, West Norwegian Caledonides. Bull Volcanol 63, 164–178 (2001). https://doi.org/10.1007/s004450100132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004450100132

Keywords

Navigation