Skip to main content
Log in

Geochemistry of highly saline fluids in siliciclastic sequences: genetic implications for post-Variscan fluid flow in the Moravosilesian Palaeozoic of the Czech Republic

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Ubiquitous post-Variscan dolomites occur in Zn–Pb–Cu veins at the Nízký Jeseník Mountains and the Upper Silesian Basin (Lower and Upper Carboniferous siliciclastics at the eastern part of the Bohemian Massif). Crush–leach, stable isotope (oxygen and carbon) and microthermometry analysis of the fluid inclusions in dolomites enable understanding the geochemistry, origin and possible migration pathways of the fluids. Homogenisation temperatures of fluid inclusions range between 66 and 148°C, with generally higher temperatures in the Nízký Jeseník Mountains area than in the Upper Silesian Basin. The highest homogenisation temperatures (up to 148°C) have been found near major regional faults and the lowest in a distant position or at higher stratigraphic levels. Highly saline (16.6–28.4 eq. wt% NaCl) H2O–NaCl–CaCl2 ± MgCl2 fluids occur in inclusions. Na–Cl–Br systematics of trapped fluids and a calculated oxygen isotopic fluid composition between −0.9 and +3.0‰ V-SMOW indicate that the fluid was derived from evaporated seawater. Stable isotopic modelling has been used to explain stable isotopic trends. Isotopic values (δ13C = −6.0/+2.0‰ V-PDB, δ18O = +15.5/+22.5‰ V-SMOW of dolomites) resulted from fractionation and crystallisation within an open system at temperatures between 80 and 160°C. Rock-buffering explains the isotopic composition at low w/r ratios. Organic matter maturation caused the presence of isotopically light carbon in the fluids and fluid–rock interactions largely controlled the fluid chemistry (K, Li, Br and Na contents, K/Cl, I/Cl and Li/Cl molar ratios). The fluid chemistry reflects well the interaction between the fluid and underlying limestones as well as with clay- and organic-rich siliciclastics. No regional trends in temperature or fluid geochemistry favour a fluid migration model characterised by an important vertical upward migration along major faults. A permeable basement and fractured sedimentary sequence enhanced the general nature of the fluid system. Fluid characteristics are comparable with the main post-Variscan fluid flow systems in the Polish (Cracow-Silesian ore district) and German sedimentary basins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ague JJ (1994) Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut: I. Evidence for changes in composition and volume. Am J Sci 294:989–1057

    Google Scholar 

  • Appold MS, Numelin TJ, Shepherd TJ, Chenery SR (2004) Limits on the metal content of fluid inclusions in gangue minerals from the Viburnum Trend, Southeast Missouri, determined by laser ablation ICP-MS. Econ Geol 99:185–198. doi:10.2113/99.1.185

    Article  Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23. doi:10.1016/S0009-2541(02)00268-1

    Article  Google Scholar 

  • Banks DA, Boyce AJ, Samson IM (2002) Constraints on the origins of fluids forming Irish Zn–Pb–Ba deposits: evidence from the composition of fluid inclusions. Econ Geol 97:471–480. doi:10.2113/97.3.471

    Article  Google Scholar 

  • Behr HJ, Horn EE, Frenzel-Beyme K, Reutel C (1987) Fluid inclusion characteristics of Variscan and post-Variscan mineralising fluids in the Federal Republic of Germany. Chem Geol 61:273–285. doi:10.1016/0009-2541(87)90046-5

    Article  Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim Cosmochim Acta 57:683–684. doi:10.1016/0016-7037(93)90378-A

    Article  Google Scholar 

  • Boiron MC, Cathelineau M, Banks DA, Buschaert S, Fourcade S, Coulibaly Y, Michelot JL, Boyce A (2002) Fluid transfers at a basement/cover interface: Part II. Large-scale introduction of chlorine into the basement by Mesozoic basinal brines. Chem Geol 192:121–140. doi:10.1016/S0009-2541(02)00191-2

    Article  Google Scholar 

  • Boni M, Iannace A, Bechstädt T, Gasparrini M (2000a) Hydrothermal dolomites in SW Sardinia (Italy) and Cantabria (NW Spain): evidence for late- to post-Variscan widespread fluid-flow events. J Geochem Explor 69–70:225–228. doi:10.1016/S0375-6742(00)00020-0

    Article  Google Scholar 

  • Boni M, Parente G, Bechstädt T, Vivo B, Iannace A (2000b) Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan fluid flow event. Sediment Geol 131:181–200. doi:10.1016/S0037-0738(99)00131-1

    Article  Google Scholar 

  • Borisenko AS (1977) Izucenie solevovo sostava rastvorov gazovo-zidkih vklucenij v mineralah metodom kriometrii. Geologija Geofizika. Akad. Nauk SSSR, Sibir. odd., Novosibirsk 8:16–27

    Google Scholar 

  • Bottomley DJ, Renaud R, Kotzer T, Clark ID (2002) Iodine-129 constraints on residence times of deep marine brines in the Canadian Shield. Geology 30:587–590. doi :10.1130/0091-7613(2002)030<0587:ICORTO>2.0.CO;2

    Article  Google Scholar 

  • Bottrell SH, Yardley BWD, Buckley F (1988) A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bull Mineral 111:279–290

    Google Scholar 

  • Chan LH, Starinsky A, Katz A (2002) The behavior of lithium and its isotopes in oilfield brines: evidence from the Heletz-Kokhav field, Israel. Geochim Cosmochim Acta 66:615–623. doi:10.1016/S0016-7037(01)00800-6

    Article  Google Scholar 

  • Connolly CA, Walter LM, Baadsgaard H, Longstaffe FJ (1990a) Origin and evolution of formation waters, Alberta basin, Western Canada sedimentary basin: I. Chemistry. Appl Geochem 5:375–395. doi:10.1016/0883-2927(90)90016-X

    Article  Google Scholar 

  • Connolly CA, Walter LM, Baadsgaard H, Longstaffe FJ (1990b) Origin and evolution of formation waters, Alberta basin, Western Canada sedimentary basin: II. Isotope systematics and water mixing. Appl Geochem 5:397–413. doi:10.1016/0883-2927(90)90017-Y

    Article  Google Scholar 

  • Čížek P, Tomek Č (1991) Large-scale thin-skinned tectonics in the eastern boundary of the Bohemian Massif. Tectonics 10:273–286. doi:10.1029/89TC03241

    Article  Google Scholar 

  • Dallmeyer RD, Franke W, Weber K (eds) (1995) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin

    Google Scholar 

  • Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behavior of fluid inclusions in laboratory-grow halite crystals in the system NaCl–H2O, NaCl–KCl–H2O, NaCl–MgCl2–H2O and NaCl–CaCl2–H2O. Geochim Cosmochim Acta 54:591–601. doi:10.1016/0016-7037(90)90355-O

    Article  Google Scholar 

  • Dolníček Z, Fojt B, Slobodník M (2001) Conditions of origin of the hydrothermal mineralization in the Janovice-9 borehole. Geologické výzkumy na Moravě a ve Slezsku v r 2000 8:42–44 (in Czech)

    Google Scholar 

  • Dolníček Z, Zimák J, Slobodník M, Malý K (2003) Mineralogy and formation conditions of the four types of hydrothermal mineralization from the quarry in Hrubá Voda (Moravo-Silesian Culm). Acta Univ Palacki Olomuc Geol 38:7–22

    Google Scholar 

  • Dopita M (ed) (1997) Geology of the Czech Part of the Upper Silesian Basin. MŽP ČR, Prague, p 278 (in Czech)

  • Dubois M, Marignac C (1997) The H2O–NaCl–MgCl2 ternary phase diagram with special application to fluid inclusion studies. Econ Geol 92:114–119

    Article  Google Scholar 

  • Dudek A (1980) The crystalline basement block of the Outer Carpathians in Moravia: Bruno-Vistulikum. Rozpr Čs Akad Věd, Ř mat přír Věd 90(8):1–85

    Google Scholar 

  • Dvořák J, Honěk J, Pešek J, Valterová P (1997) Deep borehole evidence for a southward extension of the Early Namurian deposits near Němčičky, S. Moravia, Czech Republic: implication for rapid coalification. In: Gayer R, Pešek J (eds) European Coal Geology and Technology, Geological Society Special Publication 125, pp 179–193

  • Fehn U, Snyder G, Egeberg PK (2000) Dating of pore waters with 129I: relevance for the origin of marine gas hydrates. Science 289:2332–2335. doi:10.1126/science.289.5488.2332

    Article  Google Scholar 

  • Fehn U, Snyder GT (2005) Residence times and source ages of deep crustal fluids: interpretation of 129I and 36Cl results from the KTB-VB drill site, Germany. Geofluids 5:42–51. doi:10.1111/j.1468-8123.2004.00105.x

    Article  Google Scholar 

  • Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from Paris Basin, France: 1. Brines associated with Triassic salts. Chem Geol 109:149–175. doi:10.1016/0009-2541(93)90068-T

    Article  Google Scholar 

  • Fourcade S, Michelot JL, Buschaert S, Cathelineau M, Freiberger R, Coulibaly Y, Aranyossy JF (2002) Fluid transfers at the basement/cover interface. Part I. Subsurface recycling of trace carbonate from granitoid basement rocks (France). Chem Geol 192:99–119. doi:10.1016/S0009-2541(02)00192-4

    Article  Google Scholar 

  • Franců E (2000) Optical properties of organic matter in Devonian and Lower Carboniferous black shales in the northern Drahany Upland. Věstník Českého geologického ústavu 75:115–120

    Google Scholar 

  • Franke W (1995) Rhenohercynian foldbelt: autochthon and nonmetamorphic nappe units—stratigraphy. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin, pp 33–49

    Google Scholar 

  • Gasparrini M, Bakker RJ, Bechstädt T, Boni M (2003) Hot dolomites in a Variscan foreland belt: hydrothermal flow in the Cantabrian Zone (NW Spain). J Geochem Explor 78–79:501–507. doi:10.1016/S0375-6742(03)00115-8

    Article  Google Scholar 

  • Gasparrini M, Bechstädt T, Boni M (2006) Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Mar Petrol Geol 23:543–568. doi:10.1016/j.marpetgeo.2006.05.003

    Article  Google Scholar 

  • Grandia F, Canals A, Cardellach E, Banks DA, Perona J (2003) Origin of ore-forming brines in sediment-hosted Zn–Pb deposits of the Basque-Cantabrian basin, Northern Spain. Econ Geol 98:1397–1411. doi:10.2113/98.7.1397

    Article  Google Scholar 

  • Grenne T, Ihlen PM, Vokes FM (1999) Scandinavian metallogeny in a plate tectonic perspective. Miner Depos 34:422–471. doi:10.1007/s001260050215

    Article  Google Scholar 

  • Hartley AJ, Otava J (2001) Sediment provenance and dispersal in a deep marine foreland basin: the Lower Carboniferous Culm Basin, Czech Republic. J Geol Soc Lond 158:137–150

    Article  Google Scholar 

  • Havíř J (2001) Study of main axis of paleostress orientation in wider vicinity of Moravian gateway and Pálava hill (2nd phase—year 2001). Czech Geol Surv Brno (unpublished, in Czech)

  • Heijlen W, Muchez P, Banks DA (2001) Origin and evolution of high-salinity, Zn–Pb mineralising fluids in the Variscides of Belgium. Miner Depos 36:165–176. doi:10.1007/s001260050296

    Article  Google Scholar 

  • Heijlen W, Muchez P, Banks DA, Schneider J, Kucha H, Keppens E (2003) Carbonate-hosted Zn–Pb deposits in Upper Silesia, Poland: origin and evolution of mineralizing fluids and constraints on genetic models. Econ Geol 98:911–932. doi:10.2113/98.5.911

    Article  Google Scholar 

  • Hladíková J, Hladil J, Zusková J (1997) Discrimination between facies and global controls in isotope composition of carbonates: carbon and oxygen isotopes at the Devonian reef margin in Moravia (HV-105 Křtiny borehole). J Czech Geol Soc 42(1–2):1–16

    Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213. doi:10.1038/269209a0

    Article  Google Scholar 

  • Kappler P, Zeeh S (2000) Relationship between fluid flow and faulting in the Alpine realm (Austria, Germany, Italy). Sediment Geol 131:147–162. doi:10.1016/S0037-0738(99)00135-9

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Leach D, Pattrick RAD (2002) Hydrothermal fluid origins in Mississippi Valley-type ore districts: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I). Analysis of fluid inclusions from the Illinois-Kentucky Fluorspar District, Viburnum Trend, and Tri-State Districts, Midcontinent United States. Econ Geol 97(3):453–469. doi:10.2113/97.3.453

    Article  Google Scholar 

  • Kendrick MA, Burgess R, Harrison D, Bjørlykke A (2005) Noble gas and halogen evidence for the origin of Scandinavian sandstone-hosted Pb–Zn deposits. Geochim Cosmochim Acta 69(1):109–129. doi:10.1016/j.gca.2004.05.045

    Article  Google Scholar 

  • Kesler SE, Martini AM, Appold MS, Walter LM, Huston TJ, Furman FC (1996) Na–Cl–Br systematics of fluid inclusions from Mississippi Valley-type deposits, Appalachian basin: constraints on solute origin and migration paths. Geochim Cosmochim Acta 60:225–233. doi:10.1016/0016-7037(95)00390-8

    Article  Google Scholar 

  • Kruťa T (1973) Silesian minerals and their literature. MZM Brno (in Czech)

  • Kučera J, Slobodník M (2002) Regional extension of hydrothermal veins—result of an important deformation event in the Moravosilesian Paleozoic. Geolines (Praha) 14:55

    Google Scholar 

  • Kučera J, Kučerová-Charvátová K, Muchez P, Prochaska W (2005) Palaeofluid flow in siliciclastic Lower Carboniferous rocks: evidence from stable isotopes and fluid inclusions, Rhenohercynian Zone, Czech Republic. In: Mao J, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Springer, Berlin, pp 137–139

    Google Scholar 

  • Kumpera O (1983) Geology of the Lower Carboniferous of the Jeseník block. Knih Ústř Úst Geol, Prague, pp 1–172 (in Czech)

  • Kumpera O, Martinec P (1995) The development of the Carboniferous accretionary wedge in the Moravian-Silesian Paleozoic Basin. J Czech Geol Soc 40(1–2):47–64

    Google Scholar 

  • Larsen KG (1977) Sedimentology of the Bonneterre formation, southeast Missouri. Econ Geol 72:408–419

    Article  Google Scholar 

  • Leach DL, Viets JG, Kozlowski A, Kibitlewski S (1996) Geology, geochemistry, and genesis of the Silesia-Cracow zinc–lead district, southern Poland. In: Sangster DF (ed) Carbonate-hosted lead–zinc deposits. Society of Economic Geologists Special Publication 4, pp 171–181

  • Leach DL, Apodaca LE, Repetski JE, Powell JW, Rowan EL (1997) Evidence for hot Mississippi Valley-type brines in the Reelfoot Rift Complex, South-Central United States, in Late Pennsylvanian-Early Permian. US Geol Surv Prof Pap 1577:1–25

    Google Scholar 

  • McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Br and K with halite. J Sediment Petrol 57:928–937

    Google Scholar 

  • McCaig AM, Tritlla J, Banks DA (2000) Fluid mixing and recycling during Pyrenean thrusting: evidence from fluid inclusion halogen ratios. Geochim Cosmochim Acta 64:3395–3412. doi:10.1016/S0016-7037(00)00437-3

    Article  Google Scholar 

  • McCrea JM (1950) The isotopic composition of carbonate and paleotemperature scale. J Chem Phys 18:849–857. doi:10.1063/1.1747785

    Article  Google Scholar 

  • Morad S, Ben Ismail HN, De Ros LF, Al-Aasm IS, Serrhini NE (1994) Diagenesis and formation water chemistry of Triassic reservoir sandstones from southern Tunesia. Sedimentology 41:1253–1272. doi:10.1111/j.1365-3091.1994.tb01452.x

    Article  Google Scholar 

  • Moran JE, Fehn U, Hanor JS (1995) Determination of source ages and migration patterns of brines from the U.S. Gulf Coast Basin using 129I. Geochim Cosmochim Acta 59:5055–5069. doi:10.1016/0016-7037(95)00360-6

    Article  Google Scholar 

  • Muchez P, Sintubin M, Swennen R (2000) Origin and migration pattern of palaeofluids during orogeny: discussion on the Variscides of Belgium and northern France. J Geochem Explor 69–70:47–51. doi:10.1016/S0375-6742(00)00008-X

    Article  Google Scholar 

  • Muchez P, Heijlen W, Banks D, Blundell D, Boni M, Grandia F (2005) Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol Rev 27:241–267. doi:10.1016/j.oregeorev.2005.07.013

    Article  Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotope of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal deposits. Wiley, New York, pp 509–567

    Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn edn. Wiley, New York, pp 517–611

    Google Scholar 

  • Pluta I, Zuber A (1995) Origin of brines in the Upper Silesian coal basin (Poland) inferred from stable isotope and chemical data. Appl Geochem 10:447–460. doi:10.1016/0883-2927(95)00017-E

    Article  Google Scholar 

  • Rajlich P (1993) Variscan ductile tectonics of the Bohemian Massif. Czech Geol Surv Libr 65:1–171 (Prague)

    Google Scholar 

  • Samson IM, Walker RT (2000) Cryogenic Raman spectroscopic studies in the NaCl–CaCl2–H2O system and implications for low-temperature phase behavior in aqueous fluid inclusions. Can Mineral 38:35–43. doi:10.2113/gscanmin.38.1.35

    Article  Google Scholar 

  • Schmidt Mumm A, Wolfgramm M (2004) Fluid systems and mineralization in the north German and Polish basin. Geofluids 4:315–328. doi:10.1111/j.1468-8123.2004.00090.x

    Article  Google Scholar 

  • Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM, Urban M, Lobkowicz M (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80:73–92. doi:10.1007/BF01828768

    Article  Google Scholar 

  • Siemes H, Breuer C (1992) Geostatistische Vorratsberechnung einer sedimentären Pb–Zn–Lagerstätte. Erzmetall 45:48–56

    Google Scholar 

  • Slobodník M (2002) Hydrothermal vein-type mineralisation of the Moravian karst area, Moravia, CR: insight from type of fluids and P-T conditions point of view. Acta Mus Morav Sci Geol 87:113–136 (in Czech)

    Google Scholar 

  • Slobodník M, Dolníček Z (2001) Fundamental features of fluids of hydrothermal mineralization near Hrabůvka, the Nízký Jeseník Upland. Geologické výzkumy na Moravě a ve Slezsku v r. 2000 8:52–54 (in Czech)

    Google Scholar 

  • Slobodník M, Muchez P, Viaene W (1997) Hydrothermal fluid flow in the Devonian and Carboniferous of the Rhenohercynicum of the Bohemian Massif. In: Papunen H (ed) Mineral deposits: research and exploration—where do they meet?. A.A. Balkema, Rotterdam, pp 583–586

    Google Scholar 

  • Slobodník M, Muchez P, Dolníček Z, Žák L (1999) Regional occurrence of saline, mineralising fluids at the eastern border of the Bohemian Massif. In: Stanley CJ (ed) Mineral deposits: processes to processing. A.A. Balkema, Rotterdam, pp 901–904

    Google Scholar 

  • Slobodník M, Muchez P, Dolníček Z (2001) Zn–Pb–Cu mineralization in reef carbonates beneath the Upper Silesian Basin, Czech Republic: possible extremity of the Silesian-Cracow MVT district. In: Piestrzyński A (ed) Mineral deposits at the beggining of the 21st century. A.A. Balkema, Rotterdam, pp 209–212

    Google Scholar 

  • Spencer RJ, Möller N, Weare JH (1990) The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na–K–Ca–Mg–Cl–SO4–H2O systems at the temperatures below 25°C. Geochim Cosmochim Acta 54:575–590. doi:10.1016/0016-7037(90)90354-N

    Article  Google Scholar 

  • Starinsky A, Katz A (2003) The formation of natural cryogenic brines. Geochim Cosmochim Acta 67:1475–1484. doi:10.1016/S0016-7037(02)01295-4

    Article  Google Scholar 

  • Welser P, Uher A (2002) Epigenetic mineralization of dislocations and fissures in the Carboniferous rocks on the Staříč Mine (NE Moravia). Bull Miner Petrol Odd Nar Muz 10:298–303 (in Czech)

    Google Scholar 

  • Zhang YG, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions. Chem Geol 64:335–350. doi:10.1016/0009-2541(87)90012-X

    Article  Google Scholar 

  • Zheng YF (1990) Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2. A quantitative evaluation and application to the Kushikino gold mining area in Japan. Miner Depos 25:246–250. doi:10.1007/BF00198993

    Article  Google Scholar 

  • Zheng YF (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J 33:109–126

    Google Scholar 

  • Zheng YF, Hoefs J (1993) Carbon and oxygen isotopic covariations in hydrothermal calcites. Theoretical modeling on mixing processes and application to Pb–Zn deposits in the Harz Mountains, Germany. Miner Depos 28:79–89. doi:10.1007/BF00196332

    Article  Google Scholar 

  • Zherebtsova IK, Volkova NN (1966) Experimental study of behaviour of trace elements in the process of natural solar evaporation of Black Sea water and Lake Sasky-Sivash brine. Geochem Int 3:656–670

    Google Scholar 

  • Zimák J, Losos Z, Novotný P, Dobeš P, Hladíková J (2002) Study of vein carbonates and notes to the genesis of the hydrothermal mineralization in the Moravo-Silesian Culm. J Czech Geol Soc 47:3–4

    Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Lower Carboniferous lift tectonics in the Bohemian Massif: a special kind of gravitational collapse in thickened orogenic crust. Terra Nostra 5:216–218

    Google Scholar 

Download references

Acknowledgments

Petr Welser is sincerely thanked for providing samples and for stimulating discussions on the geology of the Upper Silesian Basin. Discussions with Vratislav Hurai and Jan Cempírek improved the paper. We are also grateful to G. R. J. Browning for his helpful comments and improvement of the text. We thank H. Nijs for the careful preparation of the doubly polished sections, I. Jačková, K. Malý and P. Čech for the stable isotope analysis. Critical comments of reviewers, Michel Dubois and Thilo Bechstaedt, contributed well to the quality of the paper and also editorial handling by Wolf-Christian Dullo is appreciated. The study was supported by grants (the Czech Science Foundation, the Ministery of Education) no. GAČR 205/00/0356, FRVŠ 584/2003, FRVŠ 568/2004 and MSM0021622412.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Slobodník.

Appendix

Appendix

See Table 4.

Table 4 Reconstructed compositiona of fluids from inclusions in dolomites

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kučera, J., Muchez, P., Slobodník, M. et al. Geochemistry of highly saline fluids in siliciclastic sequences: genetic implications for post-Variscan fluid flow in the Moravosilesian Palaeozoic of the Czech Republic. Int J Earth Sci (Geol Rundsch) 99, 269–284 (2010). https://doi.org/10.1007/s00531-008-0387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0387-z

Keywords

Navigation