Skip to main content
Log in

An Elasto-Viscoplastic Model for Soft Porous Rocks Within the Consistent Framework

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

F :

Bounding surface

f :

Loading surface

G e :

Elastic shear modulus

g :

Plastic potential

h :

Viscoplastic parameter on bounding surface

K e :

Elastic bulk modulus

k m :

Material parameter

m p :

Component of unit direction along the mean effective stress axis

m q :

Component of unit direction along the deviatoric stress axis

N :

Parameter controlling the shape of bounding surface

N ic :

Specific volume on isotropic compression line

p′:

Mean effective stress

\( p_{c}^{\prime } \) :

Size of loading surface

\( p_{0}^{\prime } \) :

Size of plastic potential

\( p_{\text{t}}^{\prime } \) :

Isotropic tensile strength

\( \bar{p}^{\prime } \) :

Mean effective stress on bounding surface

\( \bar{p}_{\text{c}}^{\prime } \) :

Size of bounding surface

\( \bar{p}^{\prime }_{{{\text{c}},{\text{i}}}} \) :

Plastic hardening parameter in initial condition

\( \bar{p}^{{\prime }}_{{{\text{c}},{\text{f}}}} \) :

Final value of hardening parameter

q :

Deviatoric stress

\( \bar{q} \) :

Deviatoric stress at bounding surface

R :

Shape parameter for bounding surface

t :

Time

χ :

Viscoplastic multiplier

ɛ q :

Deviatoric strain

ɛ v :

Volumetric strain

\( \varepsilon_{\text{v}}^{\text{vp}} \) :

Viscoplastic volumetric strain

ζ :

Plastic volumetric strain hardening modulus

\( \tilde{\zeta }\left( {{\text{d}}\varepsilon_{\text{v}}^{\text{vp}} } \right) \) :

Coupling hardening factor from plastic strain

ζ b :

Viscoplastic hardening parameter at bounding surface

ζ a :

Arbitrary strain modulus on loading surface

γ :

Plastic volumetric strain rate hardening modulus

\( \tilde{\gamma }\left( {{\text{d}}\dot{\varepsilon }_{\text{v}}^{\text{vp}} } \right) \) :

Coupling hardening factor from plastic strain rate

γ b :

Plastic strain rate hardening parameter at bounding surface

γ a :

Arbitrary strain rate modulus on loading surface

η p :

Slope of peak strength line in p′ ~ q plane

η :

Stress ratio

κ :

Slope of unloading–reloading lines in υ − ln p′ plane

λ :

Slope of isotropic compression line in υ − ln p′ plane

v :

Poisson’s ratio

υ :

Specific volume

\( \varvec{D}^{\text{e}} \) :

Elastic stiffness

m :

Unit direction of plastic flow

n :

Unit vector normal to the loading/bounding surface

\( \varvec{\delta} \) :

Identity vector

\( \varvec{\varepsilon} \) :

Strain vector in triaxial notation

\( \varvec{\varepsilon}^{\text{e}} \) :

Elastic strain vector

\( \varvec{\varepsilon}^{\text{vp}} \) :

Viscoplastic strain vector

\( \varvec{\sigma^{\prime}} \) :

Effective stress vector

\( \bar{\varvec{\sigma }}^{\prime } \) :

Effective stress on bounding surface

References

  • Bjerrum L (1967) Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique 17:83–118

    Article  Google Scholar 

  • Cristescu ND (1993) A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech Abstr 30:125–140. doi:10.1016/0148-9062(93)90705-I

    Article  Google Scholar 

  • Dahou A, Shao JF, Bederiat M (1995) Experimental and numerical investigations on transient creep of porous chalk. Mech Mater 21:147–158. doi:10.1016/0167-6636(95)00004-6

    Article  Google Scholar 

  • Dragon A, Mróz Z (1979) A continuum model for plastic-brittle behaviour of rock and concrete. Int J Eng Sci 17:121–137

    Article  Google Scholar 

  • Grgic D (2016) Constitutive modelling of the elastic–plastic, viscoplastic and damage behaviour of hard porous rocks within the unified theory of inelastic flow. Acta Geotech 11:95–126. doi:10.1007/s11440-014-0356-6

    Article  Google Scholar 

  • Jin J, Cristescu ND (1998) An elastic/viscoplastic model for transient creep of rock salt. Int J Plast 14:85–107

    Article  Google Scholar 

  • Liao HJ, Pu WC, Yin JH, Akaishi M, Tonosaki A (2004) Numerical modeling of the strain rate effect on the stress-strain relation for soft rock using a 3-D elastic visco-plastic model. Int J Rock Mech Min Sci 41:342–347

    Article  Google Scholar 

  • Ma J (2016) An elastoplastic model for partially saturated collapsible rocks. Rock Mech Rock Eng 49:455–465. doi:10.1007/s00603-015-0751-9

    Article  Google Scholar 

  • Nawrocki PA, Mróz Z (1998) A viscoplastic degradation model for rocks. Int J Rock Mech Min Sci 35:991–1000

    Article  Google Scholar 

  • Perzyna P (1966) Fundamental problems in viscoplasticity. In: Chernyi GG, Dryden HL, Germain P, Howarth L, Olszak W, Prager W, Probstein RF, Ziegler H (eds) Advances in applied mechanics, vol 9. Elsevier, Amsterdam, pp 243–377. doi:10.1016/S0065-2156(08)70009-7

    Google Scholar 

  • Šuklje L (1957) The analysis of the consolidation process by the isotache method. Paper presented at the proceedings of 4th international conference on soil mechanics and foundation engineering, London

  • Wang WM, Sluys LJ, De Borst R (1997) Viscoplasticity for instabilities due to strain softening and strain-rate softening. Int J Numer Methods Eng 40:3839–3864

    Article  Google Scholar 

  • Xie SY, Shao JF (2006) Elastoplastic deformation of a porous rock and water interaction. Int J Plast 22:2195–2225

    Article  Google Scholar 

  • Yin J-H, Graham J (1994) Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress–strain behaviour of clays. Can Geotech J 31:42–52. doi:10.1139/t94-005

    Article  Google Scholar 

  • Zienkiewicz OC, Cormeau IC (1974) Visco-plasticity–plasticity and creep in elastic solids—a unified numerical solution approach. Int J Numer Methods Eng 8:821–845. doi:10.1002/nme.1620080411

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC, No. 51508416) and Provincial Commonweal Science Foundation of Zhejiang (PCSFZ, No. 2017C33220). The financial support is gratefully acknowledged. Valuable suggestions from Professor Nasser Khalili (UNSW Australia) and anonymous reviewers are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J. An Elasto-Viscoplastic Model for Soft Porous Rocks Within the Consistent Framework. Rock Mech Rock Eng 50, 3109–3114 (2017). https://doi.org/10.1007/s00603-017-1283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1283-2

Keywords

Navigation