Skip to main content
Log in

Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden)

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A crucial issue to characterize hydraulic fractures is the robust, accurate and automated detection and location of acoustic emissions (AE) associated with the fracture nucleation and growth process. Waveform stacking and coherence analysis techniques are here adapted using massive datasets with very high sampling (1 MHz) from a hydraulic fracturing experiment that took place 410 m below surface in the Äspö Hard Rock Laboratory (Sweden). We present the results obtained during the conventional, continuous water injection experiment Hydraulic Fracture 2. The resulting catalogue is composed of more than 4000 AEs. Frequency–magnitude distribution from AE magnitudes (MAE) reveals a high b value of 2.4. The magnitude of completeness is also estimated approximately MAE 1.1, and we observe an interval range of MAE between 0.77 and 2.79. The hydraulic fractures growth is then characterized by mapping the spatiotemporal evolution of AE hypocentres. The AE activity is spatially clustered in a prolate ellipsoid, resembling the main activated fracture volume (~105 m3), where the lengths of the principal axes (a = 10 m; b = 5 m; c = 4 m) define its size and its orientation can be estimated for a rupture plane (strike ~123°, dip ~60°). An asymmetric rupture process regarding to the fracturing borehole is clearly exhibited. AE events migrate upwards covering the depth interval between 404 and 414 m. After completing each injection and reinjection phase, the AE activity decreases and appears located in the same area of the initial fracture phase, suggesting a crack-closing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Baisch S, Harjes HP (2003) A model for fluid-induced seismicity at the KTB, Germany. Geophys J Int 152:160–170

    Article  Google Scholar 

  • Becker D, Cailleau B, Dahm T, Shapiro S, Kaiser D (2010) Stress triggering and stress memory observed from acoustic emission records in a salt mine. Geophys J Int 182:933–948

    Article  Google Scholar 

  • Beyreuther M, Hammer C, Wassermann J, Ohrnberger M, Megies T (2012) Constructing a hidden Markov model based earthquake detector: application to induced seismicity. Geophys J Int 189(1):602–610. doi:10.1111/j.1365-246X.2012.05361.x

    Article  Google Scholar 

  • Bohnhoff M, Dresen G, Ellsworth WL, Ito H (2009) Passive seismic monitoring of natural and induced earthquakes: case studies, future directions and socio-economic relevance. In: Cloetingh SAPL, Negendank J (eds) New frontiers in integrated solid earth sciences. Springer, Berlin, pp 261–285

    Chapter  Google Scholar 

  • Cesca S, Grigoli F (2015) Chapter two—full waveform seismological advances for microseismic monitoring. Adv Geophys 56:169–228

    Article  Google Scholar 

  • Cesca S, Grigoli F, Heimann S, Dahm T, Kriegerowski M, Sobiesiak M, Tassara C, Olcay M (2016) The Mw 8.1 2014 Iquique, Chile, seismic sequence: a tale of foreshocks and aftershocks. Geophys J Int 204(3):1766–1780

    Article  Google Scholar 

  • Cox SJD, Meredith PG (1993) Microcrack formation and material softening in rock measured by monitoring acoustic emissions. Int J Rock Mech Min Sci Geomech Abstr 30:11–24

    Article  Google Scholar 

  • Dahm T (2001) Rupture dimensions and rupture processes of fluid-induced microcracks in salt rock. J Volcanol Geotherm Res 109(1–3):149–162

    Article  Google Scholar 

  • Dahm T, Fischer T, Hainzl S (2008) Mechanical intrusion models and their implications for the possibility of magma-driven swarms in NW Bohemia region. Stud Geophys Geod 52(4):529–548

    Article  Google Scholar 

  • Dahm T, Hainzl S, Fischer T (2010) Bidirectional and unidirectional fracture growth during hydrofracturing: role of driving stress gradients. J Geophys Res 115:B12322

    Article  Google Scholar 

  • Davies R, Foulger GR, Bindley A, Styles P (2013) Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Mar Pet Geol 45:171–185

    Article  Google Scholar 

  • Economides MJ, Nolte KG, Ahmed U, Schlumberger D (2000) Reservoir stimulation, vol 18. Wiley, New York

    Google Scholar 

  • Eisenblätter J, Spies T (2000) Ein Magnitudenmass für Schallemyssionsanalyse und Mikroakustik, vol 12. Kolloquium Schallemission. Deutsche Gesellschaft f¨ur Zerstôrungsfreie Prüfung, Jena

    Google Scholar 

  • Ellsworth WL (2013) Injection-induced earthquakes. Science 341(6142):1 225 942

    Article  Google Scholar 

  • Fischer T, Hainzl S, Eisner L, Shapiro S, Le Calvez J (2008) Microseismic signatures of hydraulic fracture growth in sediment formations: observations and modeling. J Geophys Res 113:B02307. doi:10.1029/2007JB005070

    Google Scholar 

  • Fischer T, Hainzl S, Dahm T (2009) The creation of an asymmetric hydraulic fracture as a result of driving stress gradients. Geophys J Int 179:634–639. doi:10.1111/j.1365246X.2009.04316.x

    Article  Google Scholar 

  • Geiger L (1910) Determination of seismic centres, nachrichten von der koniglicher gesellschaft der wissenschaften zu gottingen mathematisch physikalische klasse. Universitaet Gottingen, Gottingen, pp 331–349

    Google Scholar 

  • Goodfellow SD, Young RP (2014) A laboratory acoustic emission experiment under in situ conditions. Geophys Res Lett. doi:10.1002/2014GL059965

    Google Scholar 

  • Grigoli F, Cesca S, Vassallo M, Dahm T (2013) Automated seismic event location by traveltime stacking: an application to mining induced seismicity. Seismol Res Lett 84(4):666–677

    Article  Google Scholar 

  • Grigoli F, Cesca S, Amoroso O, Emolo A, Zollo A, Dahm T (2014) Automated seismic event location by waveform coherence analysis. Geophys J Int 196(3):1742–1753

    Article  Google Scholar 

  • Grigoli F, Cesca S, Krieger L, Kriegerowski M, Gammaldi S, Horalek J, Priolo E, Dahm T (2016) Automated microseismic event location using master-event waveform stacking. Sci Rep 6:25744. doi:10.1038/srep25744

    Article  Google Scholar 

  • Gutenberg R, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Hainzl S (2016) Rate-Dependent incompleteness of earthquake catalogs. Seismol Res Lett 87(2A):337–344

    Article  Google Scholar 

  • Heimann S, Matos C, Cesca S, Rio I, Custódio S (2017) Lassie: a versatile tool to detect and locate seismicity, (in preparation)

  • House L (1987) Locating microearthquakes induced by hydraulic fracturing in crystalline rocks. Geophys Res Lett 14(9):919–921

    Article  Google Scholar 

  • Kochnev VA, Goz IV, Polyakov VS, Murtayev IS, Savin VG, Zommer BK, Bryksin IV (2007) Imaging hydraulic fracture zones from surface passive microseismic data. First Break 25:77–80

    Google Scholar 

  • Köhler N, Spies T, Dahm T (2009) Seismicity pattern and variation of the frequency magnitude distribution of microcracks in salt. Geophys J Int 179(1):489–499. doi:10.1111/j.1365-246X.2009.04303.x

    Article  Google Scholar 

  • Kwiatek G, Plenkers K, Dresen G (2011) Source parameters of picoseismicity recorded at mponeng deep gold mine, South Africa: implications for scaling relations. Bull Seismol Soc Am 101(6):2592–2608

    Article  Google Scholar 

  • López-Comino JA, Cesca S, Kriegerowski M, Heimann S, Dahm T, Mirek J, Lasocki S (2017a) Monitoring performance using synthetic data for induced microseismicity by hydrofracking at the Wysin site (Poland). Geophys J Int 210(1):42–55

    Article  Google Scholar 

  • López-Comino JA, Heimann S, Cesca S, Milkereit C, Dahm T, Zang A (2017b) Automated full waveform detection and location algorithm of acoustic emissions from hydraulic fracturing experiment. Proc Eng 191:697–702

    Article  Google Scholar 

  • Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66:639–666

    Google Scholar 

  • Maghsoudi S, Cesca S, Hainzl S, Kaiser D, Becker D, Dahm T (2013) Improving the estimation of detection probability and magnitude of completeness in strongly heterogeneous media, an application to acoustic emission (AE). Geophys J Int 193(3):1556–1569

    Article  Google Scholar 

  • Maghsoudi S, Hainzl S, Cesca S, Dahm T, Kaiser D (2014) Identification and characterization of growing large-scale en-echelon fractures in a salt mine. Geophys J Int 196(2):1092–1105

    Article  Google Scholar 

  • Manthei G, Eisenblätter J, Kamlot P (2003) Stress measurements in salt mines using a special hydraulic fracturing borehole tool. In: Natau O, Fecker E, Pimentel E (eds) Geotechnical measurement and modelling. CRC Press, Boca Raton, pp 355–360

    Google Scholar 

  • Matos C, Heimann S, Grigoli F, Cesca S, Custódio S (2016) Seismicity of a slow deforming environment: Alentejo, south Portugal, EGU General Assembly 2016, EGU2016-278

  • McGarr A (2014) Maximum magnitude earthquakes induced by fluid injection. J Geophys Res Solid Earth 119:1008–1019. doi:10.1002/2013JB010597

    Article  Google Scholar 

  • McLaskey GC, Kilgore BD, Lockner DA, Beeler NM (2014) Laboratory generated M -6 Earthquakes. Pure appl Geophys 31:157–168. doi:10.1007/s00024-013-0772-9

    Google Scholar 

  • Niitsuma H, Nagano K, Hisamatsu K (1993) Analysis of acoustic emission from hydraulically induced tensile fracture of rock. J Acoust Emiss 11(4):S1–S18

    Google Scholar 

  • Philipp J, Plenkers K, Gärtner G, Teichmann L (2015) On the potential of In-Situ acoustic emission (AE) technology for the monitoring of dynamic processes in salt mines. In: Roberts L (ed) Mechanical behaviour of salt, vol VIII. CRC Press, Boca Raton, pp 89–98

    Google Scholar 

  • Rubinstein JL, Mahani AB (2015) Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismol Res Lett 86(4):1060–1067

    Article  Google Scholar 

  • Smart KJ, Ofoegbu GI, Morris AP, McGinnis RN, Ferrill DA (2014) Geomechanical modeling of hydraulic fracturing: why mechanical stratigraphy, stress state, and pre-existing structure matter. Am Assoc Pet Geol Bull 98(11):2237–2261

    Google Scholar 

  • Suckale J (2009) Induced seismicity in hydrocarbonfields. Adv Geophys 51:55–106. doi:10.1016/S0065-2687(09)05107-3

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of complete reporting in earthquake catalogs: examples from alaska, the western united states, and Japan. Bull Seismol Soc Am 90:859–869

    Article  Google Scholar 

  • Zang A, Oye V, Jousset P, Deichmann N, Gritto R, McGarr A, Majer E, Bruhn D (2014) Analysis of induced seismicity in geothermal reservoirs—an overview. Geothermics 52:6–21

    Article  Google Scholar 

  • Zang A, Stephansson O, Stenberg L, Plenkers K, Milkereit C, Kwiatek G, Dresen G, Schill E, Zimmermann G, Dahm T, Weber M (2017) Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophys J Int 208(2):790–813

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the EU H2020 SHEER project (www.sheerproject.eu—Grant agreement No. 640896). The in situ experiment (Nova project 54-14-1) was supported by the GFZ German Research Center for Geosciences (75%), the KIT Karlsruhe Institute of Technology (15%) and the Nova Center for University Studies, Research and Development (10%). An additional in-kind contribution of Swedish Nuclear Fuel and Waste Management Co (SKB) for using Äspö Hard Rock Laboratory as test site for geothermal research is greatly acknowledged. Francesco Grigoli is currently founded by the EU H2020 DESTRESS (Grant agreement No. 691728). The data for this paper are available by contacting A. Zang at zang@gfz-potsdam.de.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. López-Comino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Comino, J.A., Cesca, S., Heimann, S. et al. Characterization of Hydraulic Fractures Growth During the Äspö Hard Rock Laboratory Experiment (Sweden). Rock Mech Rock Eng 50, 2985–3001 (2017). https://doi.org/10.1007/s00603-017-1285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1285-0

Keywords

Navigation