Skip to main content
Log in

Permeability Enhancement and Fracture Development of Hydraulic In Situ Experiments in the Äspö Hard Rock Laboratory, Sweden

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A new advanced protocol of progressively increased cyclic injection and pulsed injection design for hydraulic fracturing experiments was implemented at 410 m depth in the Äspö Hard Rock Laboratory in Sweden. A monitoring array was installed around the tested horizontal borehole to detect the acoustic emissions and micro-seismic events during the fracturing process. The aim is to identify optimized injection schemes to reduce the seismicity related to the fracturing processes. The cyclic stimulation scheme of loading and unloading the fracturing net pressure leads to a lower accompanied seismicity if compared to the conventional hydraulic fracturing with constant flow rates. The related permeability of the tested rock interval can be increased, but this increase is less pronounced than that of the conventional treatments and, especially, if compared to the last of the re-fracturing series with high seismicity increase. Despite these limitations, in field applications with expected high risk of unwanted seismic events, this advanced protocol can be a feasible option to reduce this risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

(modified from Zang et al. 2017a)

Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Abbreviations

AE:

Acoustic emission

EGS:

Enhanced geothermal system

EM:

Electromagnetic

FBP:

Formation breakdown pressure

HF:

Hydrofracturing test

HRL:

Hard rock laboratory

ISIP:

Instantaneous shut-in pressure

M:

Monitoring borehole

MF:

Main frac

MS:

Micro-seismic

RF:

Refrac cycle

RFP:

Refrac pressure

S1:

Maximum principal stress

S2:

Intermediate principal stress

S3:

Minimum principal stress

Sh:

Minimum horizontal stress

h :

Interval length

k :

Permeability

ln:

Natural logarithm

q :

Flow rate

q mean :

Mean flow rate

t 0 :

Injection time

Δt :

Shut-in time

V inj :

Fluid volume injected

V re :

Fluid volume returned

α :

Dip (with respect to horizontal)

β :

Dip direction (north over east)

θ :

Fracture strike direction (north over east)

μ :

Dynamic viscosity of fluid

References

  • Ask D (2003) Evaluation of measurement-related uncertainties in the analysis of overcoring rock stress data from Äspö HRL, Sweden: a case study. Int J Rock Mech Min Sci 40(7–8):1173–1187

    Article  Google Scholar 

  • Ask D (2006a) New developments in the integrated stress determination method and their application to rock stress data at the Äspö HRL, Sweden. Int J Rock Mech Min Sci 43(1):107–126

    Article  Google Scholar 

  • Ask D (2006b) Measurement-related uncertainties in overcoring data at the Äspö HRL, Sweden. Part 2: Biaxial tests of CSIRO HI overcore samples. Int J Rock Mech Min Sci 43(1):127–138

    Article  Google Scholar 

  • Deon F, Regenspurg S, Zimmermann G (2013) Geochemical interactions of Al2O3-based proppants with highly saline geothermal brines at simulated in situ temperature conditions. Geothermics 47:53–60

    Article  Google Scholar 

  • Economides MJ, Nolte KG (2000) Reservoir stimulation, 3rd ed. Wiley, United Kingdom

    Google Scholar 

  • Haimson B, Cornet F (2003) ISRM suggested methods for rock stress estimation. Part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J Rock Mech Min Sci 40(7–8):1011–1020

    Article  Google Scholar 

  • Häring M, Schanz U, Ladner F, Dyer BC (2008) Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37:469–495

    Article  Google Scholar 

  • Horne RN (1995) Modern well test analysis: a computer-aided approach 2nd edn. Petroway Inc, Palo Alto

    Google Scholar 

  • Johnson DE, Wright TB, Tambini M, Maroli R, Cleary MP (1993) Real-data on-site analysis of hydraulic fracturing generates optimum procedures for job design and execution. SPE 25920

  • Kiel OM (1977) The Kiel process—reservoir stimulation by dendritic fracturing. Soc Pet Eng SPE-6984-MS, pp 1–29

  • Klee G, Rummel F (2002) IPR-02-02 rock stress measurements at the Äspö HRL Hydraulic fracturing in boreholes. Tech Rep SKB

  • Kwiatek G, Bohnhoff M, Dresen G, Schulze A, Schulte T, Zimmermann G, Huenges E (2010) Microseismicity induced during fluid-injection: a case study from the geothermal site at Groß Schönebeck, North German Basin. Acta Geophys 58(6):995–1020

    Article  Google Scholar 

  • Kwiatek G, Plenkers K, Martinez Garzon P, Leonhardt M, Zang A, Dresen G (2017) New insights into fracture process through in-situ acoustic emission monitoring during fatigue hydraulic fracture experiment in Äspö Hard Rock Laboratory. Procedia Eng 191:618–622

    Article  Google Scholar 

  • Legarth B, Huenges E, Zimmermann G (2005) Hydraulic fracturing in a sedimentary geothermal reservoir: results and implications. Int J Rock Mech Min Sci 42:1028–1041

    Article  Google Scholar 

  • Lopez Comino J, Heimann S, Cesca S, Milkereit C, Dahm T, Zang A (2017a) Automated full waveform detection and location algorithm of acoustic emissions from hydraulic fracturing experiment. Procedia Eng 191:697–702

    Article  Google Scholar 

  • Lopez Comino J, Heimann S, Cesca S, Grigoli F, Milkereit C, Dahm T, Zang A (2017b) Characterization of hydraulic fractures growth during the Äspö Hard Rock Laboratory Experiment (Sweden). Rock Mech Rock Eng 50:2985–3001

    Article  Google Scholar 

  • Majer EL, Baria R, Stark M, Oates S, Bommer J, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36:185–222

    Article  Google Scholar 

  • Palisch T, Duenckel R, Wilson B (2015) New technology yields ultrahigh-strength proppant. SPE Production and Operations SPE-168631-PA, pp 76–81

  • Patel SM, Sondergeld CH, Rai CS (2017) Laboratory studies of hydraulic fracturing by cyclic injection. Int J Rock Mech Min Sci 95:8–15

    Article  Google Scholar 

  • Reinicke A, Blöcher G, Zimmermann G, Huenges E, Dresen G, Stanchits S, Legarth BA, Makurat A (2013) Mechanically induced fracture-face skin: insights from laboratory testing and modeling approaches. SPE Prod Oper 28(1):26–35

    Google Scholar 

  • Schubarth S, Milton-Tayler D (2004) Investigating how proppant packs change under stress. SPE 90562

  • Shen B, Stephansson O, Rinne M (2014) Modelling rock fracturing processes: a fracture mechanics approach using FRACOD. Springer, Dordrecht

    Book  Google Scholar 

  • Tester JW, Anderson BJ, Batchelor AS, Blackwell DD, DiPippo R, Drake EM, Garnish J, Livesay B, Moore MC, Nichols KM, Petty S, Toksöz MN, Veatch Jr RW, Baria R, Augustine C, Murphy E, Negraru P, Richards M (2006) The future of geothermal energy: impact of enhanced geothermal systems (EGS) on the United States in the 21st century. Massachusetts Institute of Technology, Massachusetts (ISBN: 0-615-13438-6)

    Google Scholar 

  • Yoon JS, Zimmermann G, Zang A (2015a) Numerical investigation on stress shadowing in fluid injection-induced fracture propagation in naturally fractured geothermal reservoirs. Rock Mech Rock Eng 48:1439–1454

    Article  Google Scholar 

  • Yoon JS, Zimmermann G, Zang A (2015b) Discrete element of cyclic rate fluid injection at multiple locations in naturally fractured reservoirs. Int J Rock Mech Min Sci 74:15–23

    Article  Google Scholar 

  • Yoon JS, Zimmermann G, Zang A, Stephansson O (2015c) Discrete element modeling of fluid injection-induced seismicity and activation of nearby fault. Can Geotech J 52:1457–1465

    Article  Google Scholar 

  • Zang A, Stephansson O (2010) Stress field of the earth’s crust. Springer, Berlin

    Book  Google Scholar 

  • Zang A, Wagner FC, Stanchits S, Janssen C, Dresen G (2000) Fracture process zone in granite. J Geophys Res 105(B10):23651–23661

    Article  Google Scholar 

  • Zang A, Stanchits S, Dresen G (2002) Acoustic emission controlled triaxial rock fracture and friction tests. In: Dyskin AV, Hu X, Sahouryeh E (eds), Structural integrity and fracture, Swets & Zeitlinger, Netherlands, pp 289–294

    Google Scholar 

  • Zang A, Yoon JS, Stephansson O, Heidbach O (2013) Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity. Geophys J Int 195(2):1282–1287

    Article  Google Scholar 

  • Zang A, Stephansson O, Stenberg L, Plenkers K, Specht S, Milkereit C, Schill E, Kwiatek G, Dresen G, Zimmermann G, Dahm T, Weber M (2017a) Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophys J Int 208(2):790–813

    Article  Google Scholar 

  • Zang A, Stephansson O, Zimmermann G (2017b) Keynote: fatigue hydraulic fracturing. Procedia Eng 191:1126–1134

    Article  Google Scholar 

  • Zang A, Zimmermann G, Hofmann H, Stephansson O, Min KB, Kim KY (2018) How to reduce fluid-injection-induced seismicity. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-018-1467-4

    Google Scholar 

  • Zhuang L, Kim KY, Jung SG, Diaz MB, Park S, Zang A, Stephansson O, Zimmermann G, Yoon JS (2016) Laboratory study on cyclic hydraulic fracturing of Pocheon granite in Korea. Abstracts 50th US Rock Mechanics/Geomechanics Symposiumum held in Houston Texas USA 26–29 June 2016, pp 16–163

  • Zhuang L, Kim KY, Jung SG, Nam YJ, Min KB, Park S, Zang A, Stephansson O, Zimmermann G, Yoon JS (2017) Laboratory evaluation of induced seismicity reduction and permeability enhancement effects of cyclic hydraulic fracturing. In Proceedings 51st US Rock Mechanics/Geomechanics Symposium held in San Francisco, California, USA, 25–28 June 2017, pp 17–757

  • Zimmermann G, Reinicke A (2010) Hydraulic stimulation of a deep sandstone reservoir to develop an enhanced geothermal system: laboratory and field experiments. Geothermics 39:70–77

    Article  Google Scholar 

  • Zimmermann G, Moeck I, Blöcher G (2010) Cyclic waterfrac stimulation to develop an enhanced geothermal system (EGS)—conceptual design and experimental results. Geothermics 39:59–69

    Article  Google Scholar 

Download references

Acknowledgements

The geothermal project described in this manuscript was financially supported by GFZ German Research Center for Geosciences, Potsdam (75%), KIT Karlsruhe Institute of Technology (15%) and Nova Center for University Studies, Research and Development, Oskarshamn, Sweden (10%). An additional in-kind contribution of SKB for using Äspö Hard Rock Laboratory as test site for geothermal research is greatly acknowledged. The assistance of Felix Becker (MeSy-Solexperts, Bochum) and O. Vanecek and J. Skalova (ISATech, Prague) in performing the hydraulic field tests is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Zimmermann.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Permeability is calculated by decline curve analysis taking into account the superposition principle and assuming infinite acting radial flow:

$$k=\frac{{~q~\mu }}{{4~\pi ~h\Delta p}}~\ln \left( {\frac{{{t_0}+\Delta t}}{{\Delta t}}} \right),$$

with h = interval length; q = flow rate; µ = dynamic viscosity of fluid; t0 = injection time; Δt = shut-in time ; ln = natural logarithm.

Appendix B

Figures 24, 25, 26, 27, 28 and 29 show the images of fracture traces obtained from impression packer tests for all hydraulic fracturing tests performed in the Äspö Hard Rock Laboratory. The circumference of the packer is about 310 mm, the length of the interval is approximately 1 m. Table 7 summarizes the obtained orientations of the fracture traces from the impression packer tests. The corresponding fracture locations in the borehole F1 for HF1–HF6 are shown in Fig. 30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, G., Zang, A., Stephansson, O. et al. Permeability Enhancement and Fracture Development of Hydraulic In Situ Experiments in the Äspö Hard Rock Laboratory, Sweden. Rock Mech Rock Eng 52, 495–515 (2019). https://doi.org/10.1007/s00603-018-1499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1499-9

Keywords

Navigation